
Industry Paper: Managing Geo-Distributed Stream Processing
Pipelines for the IIoT with StreamPipes Edge Extensions

Patrick Wiener
wiener@fzi.de

FZI Research Center for Information
Technology

Karlsruhe, Germany

Philipp Zehnder
zehnder@fzi.de

FZI Research Center for Information
Technology

Karlsruhe, Germany

Dominik Riemer
riemer@fzi.de

FZI Research Center for Information
Technology

Karlsruhe, Germany

ABSTRACT
The industrial IoT and its promise to realize data-driven decision-
making by analyzing industrial event streams is an important inno-
vation driver in the industrial sector. Due to an enormous increase
of generated data and the development of specialized hardware, new
decentralized paradigms such as fog computing arised to overcome
shortcomings of centralized cloud-only approaches. However, cur-
rent undertakings are focused on static deployments of standalone
services, which is insufficient for geo-distributed applications that
are composed of multiple event-driven functions. In this paper, we
present StreamPipes Edge Extensions (SEE), a novel contribution
to the open source IIoT toolbox Apache StreamPipes. With SEE,
domain experts are able to create stream processing pipelines in a
graphical editor and to assign individual pipeline elements to avail-
able edge nodes, while underlying provisioning and deployment
details are abstracted by the framework. The main contributions
are (i) a fog cluster management model to represent computing
node characteristics, (ii) a node controller for pipeline element life
cycle management and (iii) a management framework to deploy
event-driven functions to registered nodes. Our approach was val-
idated in a real industrial setup showing low overall overhead of
SEE as part of a robot-assisted product quality inspection use case.

CCS CONCEPTS
• Information systems→Computing platforms; •Computer
systems organization → n-tier architectures; Data flow ar-
chitectures.

KEYWORDS
stream processing, fog computing, industrial internet of things

ACM Reference Format:
PatrickWiener, Philipp Zehnder, and Dominik Riemer. 2020. Industry Paper:
Managing Geo-Distributed Stream Processing Pipelines for the IIoT with
StreamPipes Edge Extensions. In The 14th ACM International Conference on
Distributed and Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual
Event, QC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3401025.3401764

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401764

1 INTRODUCTION
The steady increase in digitalization in industrial domains such
as manufacturing, energy, or logistics has lead to a deluge of gen-
erated data with the industrial internet of things (IIoT) as a key
enabler bridging the physical and virtual worlds. This offers great
opportunities for companies to harvest new data sources and de-
duce meaningful data-driven insights. Typical use cases include im-
provements in product and process quality, as well as collaborative
human-machine scenarios that enable companies to generate com-
petitive cost advantages. For instance, in visual quality inspection,
readings from a camera sensor are used for quality predictions by
leveraging edge-based machine learning models to classify product
anomalies such as deviations in terms of size, shape or component
skew, consequently triggering a robot to sort out that product for
rework or scrap as depicted in Figure 1. In recent years, in order to
satisfy this insatiable need for computing capability, while still being
able to face all the challenges associated, specialization in hardware
(heterogeneity) has been massively adopted [26]. Together with the
decrease in hardware size and costs in conjunction with the devel-
opment of new decentralized computing paradigms such as fog and
edge computing attracts businesses to invest thereby overcoming

x86x86x86

x86

arm32arm64

CAM ROS

StreamPipes

Fo
g

C
lu

st
er

M

an
ag

em
en

t

Inter-
mediary

Pipeline
Modeling

Adapter
Management

Pipeline
Management

Cloud

Edge

Stream
Processing
Pipeline

Factory Shop Floor

REST

Legacy

Figure 1: A stream processing pipeline deployed over het-
erogeneous resources from edge to cloud to analyze factory
shop floor data to derive time-sensitive insights.

165

https://doi.org/10.1145/3401025.3401764
https://doi.org/10.1145/3401025.3401764
https://doi.org/10.1145/3401025.3401764

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

the shortcomings of previous cloud-only approaches in terms of
latency, privacy or available bandwidth. Thus, this offers new possi-
bilities for a new generation of stream processing applications that
are centrally modeled, and deployed over a pool of geographically
distributed compute resources.

However, this induces a variety of challenges: (i) unlike cloud
resources, intermediary fog and edge compute nodes are highly
heterogeneous with regard to their hardware, such as differences in
CPU architectures (e.g., x86, arm32, arm64, etc.), (ii) with the large
deployment of compute nodes, the managing middleware becomes
more responsible for exposing the right level of abstraction to the
upper level stacks, including pipeline orchestration and manage-
ment, as well as algorithm selection (e.g., edge optimized machine
learning model), (iii) due to fog/edge nodes being exposed to the
physical world, we cannot always assume a stable connection be-
tween or within the compute layers that affects messaging between
geo-graphically deployed pipeline elements, (iv) the technical com-
plexity concerning the deployment and provisioning of pipeline
elements needs to be hidden from (non-technical) domain experts
who are defining the application logic of pipelines.

This paper presents a conceptual model and implementation
supporting the management of geo-distributed stream processing
pipelines in fog and edge environments. Our approach is based on
an extension to the Industrial IIoT toolbox Apache StreamPipes
(incubating)1, which was originally created by the authors of this
paper and is now an incubating project of the Apache Software
Foundation. StreamPipes includes an adapter library to connect
industrial data sources and a graphical editor to allow non-technical
users to create stream processing pipelines based on a repository
of reusable stateless or stateful functions. This paper highlights a
major contribution to StreamPipes, namely StreamPipes Edge Exten-
sions, which add the capability to register edge computing nodes in
StreamPipes and allows users to automatically deploy pipeline ele-
ments to registered edge nodes. Our implementation is completely
open source2 and has been validated in real industrial settings. The
first core innovation presented in this paper is concerned with a
fog cluster management model that aims at representing capabil-
ities of nodes at data-, software- and hardware-level. Second, we
introduce a node controller architecture for pipeline element life
cycle management. Third, we outline concept and implementation
of a management framework that allows users to selectively deploy
pipeline elements to registered edge nodes.

The remainder of this paper is structured as follows: In Section 2,
we summarize the two foundational building blocks of this paper
flow-based frameworks for IIoT analytics and decentralized computing
paradigms. Section 3 presents three real-world motivating scenarios
to highlight the need for geo-distributed pipeline management.
Afterwards, the fog cluster resourcemodel is introduced in Section 4,
followed by the description of the node management framework in
Section 5. Finally, the validation and an overview of related work
are presented in Sections 6 and 7.

1https://streampipes.apache.org/
2https://github.com/apache/incubator-streampipes/tree/edge-extensions

2 BACKGROUND
In this section, we introduce flow-based approaches for stream
processing as well as fog computing, a decentralized computing
paradigm that we built on in this work.

Flow-based Frameworks for IIoT Analytics. Apache StreamPipes
is an incubator project of the Apache Software Foundation, that
provides a reuseable toolbox to easily connect, analyze and ex-
ploit a variety of IIoT-related data streams without any program-
ming skills. Therefore, it leverages different technologies especially
from the fields of stream processing, distributed computing and
semantic web. Based on the dataflow programming paradigm [21],
StreamPipes allows to model new stream processing pipelines as
a sequence of pipeline elements from an extensible toolbox and
execute them in a distributed environment consisting of multiple,
potentially heterogeneous runtime implementations. The decompo-
sition of complex analytical problems into smaller function blocks
allows StreamPipes to mitigate the problem of committing to a
single stream processing technology. On top, it uses semantics to
provide guidance to non-technical domain experts throughout the
pipeline creation process. Besides StreamPipes, there exists other
solutions for low-code dataflow programming, namely Apache Nifi,
or Node-RED.

Decentralized Computing Paradigms. While cloud computing
has acted as the de-facto standard computing paradigm over the
past decade, the massive increase in the access and deployment
of sensors (e.g., machines with MQTT, OPC-UA interfaces), and
spezialized hardware (e.g., NVIDIA Jetson) paved the way for new
concepts to manage the data growth, especially in the IIoT. This
lead to the acute need to move a substantial amount of process-
ing closer to the source thereby complementing the cloud with a
decentralized computing paradigm that is often referred to as fog
computing [3]. Since there exists no clear consensus on the term
itself, neither by researchers nor practitioners, we refer to [9, 32] for
a detailed comparison of fog computing and its related computing
paradigms such as edge computing, mist computing or cloudlet
computing. In our previous work [30], we defined fog computing
as a multi-layered, hierarchical and heterogeneous model for en-
abling access to a shared continuum of compute resources including
edge, intermediary fog and cloud nodes and allowing for dynamic
reconfiguration.

3 MOTIVATING SCENARIOS
In this section, we present three use cases for the IIoT to illustrate
the manifold of different characteristics shaping the application
space to highlight the need for geo-distributed pipeline manage-
ment as exemplified in a typical smart factory (see Figure 1).

AI-assisted Inbound Logistics (UC1). Automated shipment recog-
nition and recording are current topics in production and logistics
both in industry as well as academia. In the case of inbound logis-
tics, the automated visual recognition of the packing structure, i.e.
number/type of load carriers, bears great potential. Thereby, when
a new shipment arrives, a camera sensor streams recordings to a
machine learning classifier, that detects and identifies the dedicated
packing units that are enriched with additional order information
and send to the corresponding inventory management system.

166

https://streampipes.apache.org/
https://github.com/apache/incubator-streampipes/tree/edge-extensions

Industry Paper: Managing Geo-Distributed Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Table 1: IIoT characteristics of the presented use cases

N° Rate Privacy Latency Targeted Receiver

UC1 low high1 moderate receiving, enterprise level
UC2 high low low robot, factory level
UC3 high low low shop floor, factory level

1 to comply with the General Data Protection Regulation (GDPR).

Product Quality Inspection (UC2). Over the last decade, automa-
tion has gained immense popularity especially in the industrial
domain. In this regard, collaborative robots are one of the major
automation types supporting companies in various applications,
e.g., picking/packing, handling materials or for product quality in-
spection. Especially in the latter case, this is key to ensure high
product quality and thus high customer satisfaction. Rather than
manually performing quality inspections, collaborative robots can
be leveraged to execute this dull task at high accuracy without ex-
haustion. Here, data from equipped sensors can be used to analyze
the event stream for deviations from defined targets by the domain
expert. As a result, failed units are automatically sorted out for
rework or scrap and process data is stored for traceability or offline
training.

Asset Condition Monitoring (UC3). In industrial operations, asset
condition monitoring captures the state of machines and equipment
of manufacturing companies while running. Here, machine health
state can be continuously assessed by measurements from various
sensors, e.g., acceleration, pressure, or vibration, that are analyzed
on the fly to detect abnormal behavior in order to either react in
a timely manner or predict the remaining useful life for this asset.
This lets manufacturers identify and fix causes for costly unplanned
downtime to increase machine utilization and availability through-
out the factory shop floor. However, assessing machine health is
difficult given the average lifespan of industrial machines, brown-
field IIoT deployments are common [2]. On the other hand, sensor
data comes in high velocity and volume where hidden problems
and guesswork of domain experts can incur extra expenses.

IIoT Characteristics. What the presented use cases have in com-
mon is that they all decompose complex problems into smaller
analytical subtasks that target various places in the hierarchical
infrastructure ranging from edge deployments with fast response
times to cloud deployments for overall monitoring and storing of
results. We summarize the use cases in Table 1 by putting them
into three categories with respect to (i) the used data, (ii) their re-
quirements towards data protection and latency, as well as (iii) their
analytics target destination. Given this information, we can identify
the necessity for local event processing on the edge layer, either in-
duced by the high frequency at which data is collected (UC2,UC3),
the regulation to comply with GDPR due to possibly collecting sen-
sitive personal data (UC1), or the criticality of latency (UC2, UC3).
In addition, computation results of stream processing pipelines are
leveraged to update centrally deployed cloud-based systems on
enterprise or factory level including business relevant enterprise
resource planning as well as quality management systems.

4 FORMAL MODEL DESCRIPTION
This section presents our application and resource model for the
IIoT and serves as a foundation for our approach to managing
stream processing pipelines over the layered resource pool from
edge to cloud (cf. Section 5).

4.1 Stream Processing Application Model
Our stream processing application model is based on the dataflow
programming pattern [12, 21] that encapsulates functions in dis-
crete, reusable computational blocks called pipeline elements each
of which follow the single responsibility principle and only focus
on a specific task. Multiple consecutive pipeline elements are inter-
connected based on the well-known publish-subscribe pattern [11].
Generally, a pipeline element ω can fall into one of the following
three categories:

• adapter sources ωa are runtime instantiations from an ex-
tensible pool of adapter templates and expose a data stream
consisting of a semantic description with information on the
schema (event properties), the grounding (transport format
such as JSON, transport protocol such as MQTT, or Kafka)
and a runtime implementation operating on event level [33],

• processors ωp can be stateless/stateful functions applied to
a data stream. Similarly to adapter sources, processors also
consist of a semantic description used to determine compati-
bility to an input event stream, user input and the definition
of the output event stream as well as a runtime implementa-
tion where the actual logic is implemented.

• sinks ωs are very similar to data processors with the excep-
tion that sinks do not produce any output streams and thus
mark the end of a pipeline.

We consider the following requirements for pipeline elements
that are on (i) data-level ρd , e.g., quality, frequency, or specific
domain property types of the incoming data stream, (ii) software-
level ρs , e.g., operating system, library or kernel version, as well as
(iii) hardware-level ρh , e.g., presence and type of GPU, CPU, mem-
ory, or possibility to access dedicated sensor/actuator resources
such as camera modules (wired or via IP). For instance, let us con-
sider an image analytics pipeline as exemplified in Figure 2a. Here,
the adapter source ωa1 has a hardware requirement ρh = [camera]
to be connected to a camera and produces an image stream. The
subsequent processorωp2 declares a data stream requirement expect-
ing it to contain an image event ρd = [imaдe] besides additional
CUDA software requirements ρs = [CUDA] and GPU hardware
requirements ρh = [GPU]. Lastly, the remaining pipeline elements
do not address any special requirements.

This stream processing application model of interconnected
pipeline elements are ideal to be easily packaged and deployed
as pipeline element container including their application logic, run-
time environment as well as configuration on the underlying in-
frastructure [30].

More formally, let us consider a stream processing pipeline SPP ,
its dedicated set of pipeline elements Ω as well as their intercon-
nections Ψ. Thus, a pipeline element ω of category adapter source
ωa , processor ωp or sink ωs is defined as follows.

167

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

adapter
source

sink

processor

𝝆" = [camera]

𝝆# = [CUDA]
𝝆" = [GPU]
𝝆$ = [image]

𝜔&'

𝜔(
)

𝜔*# 𝜔+
)

𝜔,#

(a) stream processing pipeline SPP

n1

n2

n5n4

n3

n6 n7

𝒓" =
[camera]

𝒓# = [GPU]
𝒓$ = [CUDA]

(b) fog computing infrastructure FCI

n1

n2

n5
n4

n3

n6 n7

𝜔"#

𝜔$
%𝜔&#

𝜔'
% 𝜔()

(c) mapping result SPP 7→ FCI

Figure 2: Stream processing application model (2a), fog cluster resource model (2b) and best fit mapping result (2c).

Definition 4.1 (Pipeline Element). Apipeline elementω is formally
described as a tuple ω = (F , sin , sout , ρd , ρs , ρh ,m,δ), where:

• F is the encapsulated function
• sin is the input data stream
• sout is the output data stream
• ρd is a data stream requirement vector
• ρs is a software requirement vector
• ρh is a hardware requirement vector
• m are semantic metadata information
• δ contains configuration parameters

As a result, we model a stream processing pipeline SPP as a
directed acyclic graph SPP = (Ω,Ψ) where Ω = {ω1,ω2, . . . ,ωn }
is the finite set of n pipeline elements deployed along the cloud-
edge continuum, Ψ is the set of edges connecting two consecu-
tive pipeline elements of that graph. In addition, a SPP is further
characterized by ρu that denotes a vector of additional user-level
requirements w.r.t. pipeline prioritization (low, medium, high), or
deployment strategies, e.g., network-oriented (bandwidth, latency),
task-oriented (deadline driven), location-oriented (bound to a spe-
cific geographical location) [22]. While the before mentioned re-
quirements are generally known and specified by the corresponding
developer during the development phase, this requirement category
is specific to the designated end user, i.e domain expert, and thus
only known at pipeline modeling time. Furthermore, we consider
two individual pipeline elements ωi and ωj adjacent, if there exists
an edgeψi, j between (ωi ,ωj) s.t. ωi is the parent node and ωj the
child node. Let us define a stream processing pipeline as follows.

Definition 4.2 (Stream Processing Pipeline). A stream processing
pipeline SPP is formally described as a directed acyclic graph (Ω,Ψ),
with additional requirements ρu where:

• Ω is a set of pipeline elements
• Ψ is a set of interconnections
• ρu is a user-defined requirement vector

4.2 Fog Cluster Resource Model
The physical fog infrastructure consists of set of nodes possessing
computational power and/or storage capacity [22]. We consider

the fog cluster resource model to be based on a multi-layered, hi-
erarchical heterogeneous pool of shared resources that vary in
terms of their (i) geographical distribution and location (e.g., edge,
fog, cloud), (ii) proximity to the data sources with regards to la-
tency, (iii) node resources, i.e. hardware and software (e.g., CPU
architectures such as arm32, arm64, x86).

Generally, the infrastructure topology of a fog cluster consists
of several interconnected compute nodes. Thus, we can model it as
follows. Let us consider a heterogeneous fog cluster infrastructure
graph FCI = (N ,C) where N = {n1,n2, . . . ,nm } describes the set
of nodes, each of which is a dedicated fog cluster resource along the
edge-cloud continuum, and a set of network connections C linking
two nodes in the cluster, where an individual connection ci, j ∈

C connects the node pair (ni ,nj). As shown in Figure 2b, nodes
provide node resources and may also expose specific capabilities
that are (i) hardware resources rh , e.g., specialized hardware such
as GPU, (ii) software resources r s , e.g., libraries such as CUDA, as
well as (iii) accessible sensor/actuator resources ra , e.g., connected
industry camera.

Definition 4.3 (Fog Cluster Infrastructure). A fog cluster infras-
tructure FCI is formally described as an undirected, heterogeneous
graph (N ,C) where:

• N is a set of nodes from edge, fog, or cloud layer
• C is a set of network connections

The general research area of application placement, often re-
ferred to as fog application assignment problem, is broadly studied
in literature [4, 15, 22] also in terms of multi-component application
placement [1, 28]. The placement problem defines a mapping pat-
tern by which application components and links are mapped onto
an infrastructure graph. Figure 2c shows a mapping result of the
exemplified SPP graph (Figure 2a) on a given FCI graph (Figure 2b).
Typically, this involves finding available node resources that (i) sat-
isfy the pipeline element and user requirements, (ii) satisfy the
given constraints (e.g., locality constraints), as well as (iii) optimize
an objective function (if any).

For the sake of this paper, we focus on the actual pipeline element
management on geo-distributed nodes where we assume an a priori
placement as a result of a manual user selection.

168

Industry Paper: Managing Geo-Distributed Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Node

NodeType
{Logical,
Physical}

NodeLocation

Container
Runtime

SoftwareResource

Node
Resource

Container

Static
NodeMetadata

hasStatic
NodeMetadata

hasContainer

Node Controller StaticContainer
Configuration

hasConfig

hasNodeResource

hasRequirements

{DataStream,
NodeResource}
Requirements 𝛒

{CPU,GPU,MEM,
DISK,NET}

HardwareResource

Software
Resource

Hardware
Resource

NodeAddress

{OS,Libs}
SoftwareResource

hasNodeResourceRequirements

manages

hasBroker

Node
Broker

{Adapter,
Processor,Sink}

Runtime

Container
Orchestrator

hasOrchestrator

Pipeline Element
ω

contains

hasRequirements

RemoteAccessible
{Sensor,Actuator}

Resource

Accessible
{Sensor,
Actuator}
Resource

LocalAccessible
{Sensor,Actuator}

Resource

Figure 3: Conceptual node model in a fog cluster infrastructure showing inheritance () and relationships ().

5 NODE MANAGEMENT
In this section, we give a detailed descriptions of our node man-
agement approach. For the sake of simplicity, our node model was
explicitly kept at a high granularity, but still providing a good level
of abstraction w.r.t. describing the relevant components.

5.1 Node Model
The central resource of a fog cluster infrastructure for hosting
pipeline elements of stream processing pipelines is a node. Thus,
we give a detailed description of our node model as illustrated in
Figure 3.

Static Node Metadata. Each node in the cluster provides static
node metadata about itself. Thereby, a node can either be of type
virtual node, for instance a virtual machine in the cloud, or of
type bare-metal that is more typical for edge/fog nodes such as a
Raspberry Pi, Intel NUC, or NVIDIA Jetson. Besides, nodes can be
reached by their node address, i.e. via IP or DNS. Concerning the
node location, we distinguish between logical and physical node
location. Here, the logical node location is a simple tag attached to
node related to the hierarchical layers of the fog infrastructure (e.g.,
cloud, fog, edge), whereas the physical node location3 expresses
the actual position on a more fine-grained level. While this location
type could also be modeled as absolute geographical coordinates in
terms of latitude and longitude pairs, this is not practicable in the
context of IIoT, as nodes are deployed either directly on the factory
shop floor level itself or on companies premises with a reference
to machines, assembly lines, buildings or factory sites. Thus, we
represent the physical node location as set of semantic tags, e.g.,
factory=<A>, building=, machine=<C>.

3Only relevant for fog/edge nodes

Node Resources. A node (of any type), provides dedicated re-
sources to be used by stream processing applications. For our pur-
pose, we consider the following resource types (i) hardware re-
sources, (ii) software resources, and (iii) accessible sensor/actuator
resources. Since we operate in a geo-distributed environment along
the cloud-edge continuum, the resources are to be considered highly
heterogeneous. Hardware resources subsume any type of resources
that are necessary for processing (compute), transferring (network)
and storing data (storage). This includes typical resources such
as CPU, memory, disk and network, but also newly prominent
ones such as GPU. Especially the latter is beneficial in regards of
edge AI deployments, where a specific pipeline element contains
a pre-trained AI model leveraging the hardware acceleration of
the onboard GPU. Besides, a node has software resources that fall
into the category of operating system related with regards to the
type, e.g., Debian, specific libraries, e.g., NVIDIA CUDA drivers4,
but also the installed container runtime. Even though we consider
the container runtime to be based on Docker for the sake of con-
venience, our model is not exclusively restricted on it. Lastly, a
node can also have access to sensors/actuators, either locally, e.g., a
camera connected to a USB port, or remotely, e.g., via resolvable IP
address of a dedicated endpoint (OPC-UA server, or programmable
logical controller).

Container. Leveraging the container technology has many ben-
efits and well-addresses the demands in resource-limited and het-
erogenous fog computing infrastructures. Especially, when it comes
to managing stream processing pipelines in this geo-distributed
setup, this is where container technology alleviates the deployment
of individual pipeline elements. As the runtime instantiation of its
corresponding container image, a container inherits certain proper-
ties that allow it to run on heterogeneous node architectures (arm32,

4Essential to run GPU accelerated pipeline elements in containers.

169

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

arm64, amd64, etc.). A container per se has certain static configu-
rations that enables it to be parametrized when instantiated, and
thus adapted for the given use case. Containers can address node
resource requirements in order to satisfy the application running
inside.

The node controller container is part of a overall fog cluster
management concept and is a locally deployed instance responsi-
ble to manage pipeline elements throughout their application life
cycle and hence triggers pipeline element runtimes to start/stop
dedicated adapters, processors or sinks according to the invocation
request of the pipeline management backend. Besides, the node
controller manages a node broker container instance responsible
to enable messaging between locally deployed pipeline elements.
Furthermore, the node controller implements interfaces to a con-
tainer orchestrator, e.g., Docker, or Kubernetes, to do the actual
container deployment and supervision. We provide a more detailed
description of the node controller architecture in the following (cf.
Section 5.2).

The adapter, processor, sink runtime containers provide light-
weight standalone runtime wrappers for hosting individual pipeline
elements such as adapters (e.g., OPC-UA), processors (e.g., numeri-
cal filter, AI models) and sinks (e.g., databases, interfaces to Robot
Operating System). Once deployed by the node controller, they reg-
ister themselves at it while the node controller further propagates
their availability to the central node management. As described in
Section 4.1, pipeline elements formulate certain requirements on
the data stream as well as the node resources that are considered
by the placement algorithm.

As mentioned, the node broker container enables communi-
cation between individual pipeline elements running on the same
node thereby leveraging a publish-subscribe pattern. We refer to
this pattern as intra-node data flow. In the case of network outages
the node broker acts as an event buffer and allows for disconnec-
tions of nodes by temporarily persisting the events. On the other
hand, inter-node data flow can be realized by relaying local node
broker events to the node broker instance hosting the adjacent
(child) pipeline elements of a given stream processing pipeline.

5.2 Node Controller Architecture
Overall, the fog cluster management is following the master-slave
pattern [11], thus once started on a cluster node, the node controller
(slave) registers itself as a new available node in the backend (mas-
ter) as shown in Figure 4. For this purpose, we use a high available
key-value store for node metadata storage and discovery of active
nodes. Now, when a new stream processing pipeline is modeled
and deployed by the domain-expert, the pipeline management asks
the fog cluster management for available nodes and provides the
specified requirement vectors (see Section 4.1). Next, individual
pipeline elements are assigned to dedicated nodes while satisfying
the overall requirements and constraints. On the node itself, it is
a crucial task to manage pipeline elements throughout their life
cycle, from the actual deployment step and resource monitoring for
changes to removing and cleaning up. Hence, we provide a detailed
description of the underlying node controller architecture and its
interplay with the corresponding pipeline element runtimes and
the container orchestrator.

Node

Pipeline Element Runtimes
Processor
Runtime

Node Controller

Container Orchestrator

Node Broker

OS/Hardware

Sensors/Actuators

Backend (Cloud)

Fog Cluster
Management

Pipeline
Management K/V

Orchestrator
ManagerR

es
ou

rc
e

M
on

it
or

Pipeline Element
Manager

Node Janitor

API

Sink
Runtime

Adapter
Runtime
ω1

ω

...

ω

ω2

ω

ω

...

ω3

Figure 4: Node architecture with node controller, pipeline
element runtimes (adapter, processor, sink) and local node
broker instance showing internal and external control flow
(→) to the cloud-based backend, as well as data flow (→) of
running pipeline elements ω1, ω2 and ω3 via node broker in-
cluding optional access to sensors/actuators.

Node Controller API. Overall, we distinguish between data flow
and control flow. While the first denotes to the actual flow of events
from event sources, over processors to sinks, the latter refers to all
system-side messages that are essential to managing stream pro-
cessing pipelines in a geo-distributed deployment. Similarly to the
data flow, we differentiate between intra-node control flow, mean-
ing all local communication, e.g., to the pipeline element/adapter
runtime or container orchestrator, and inter-node control flow to
the backend. Thus, the node controller exposes a set of API end-
points based on the REST protocol in order to enable external and
internal communication as summarized in Table 2.

Table 2: Node controller API endpoints.

Endpoint Description

/info Provides static node metadata1,3,G
/status Provides the current resource status1,3,G
/deploy Deploys PE4 runtime container2,3,P
/invoke Starts dedicated PE in PE runtime container2,3,P
/register Registers PE’s in PE runtime container2,3,P
/detach Stops dedicated PE in PE runtime container2,3,P
/remove Removes PE runtime container2,3,D

1 Full endpoint: /node/<endpoint>
2 Full endpoint: /node/container/<endpoint>
3 HTTP GET (G), POST (P), DELETE (D) method
4 Pipeline element

170

Industry Paper: Managing Geo-Distributed Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

𝝆" = [ROS]

𝝆# = [sp:state]

𝝆# = [sp:qualitytest]

𝜔%&

𝜔'&

𝜔(
) 𝜔*

) 𝜔+
)

𝜔,-

𝜔.-

𝜔/-

𝝆# = [sp:qualitytest]
𝝆" = [ROS]

𝝆" = [ROS]

state
stream

result
stream

enrich
stream

stats &
quality check

dashboard

database

UR
ROS

gripper
stream

KPI
calc.

ROS

ROS

ROS

𝜹𝑭𝒐𝒓𝒄𝒆 > 10

(a) Quality inspection and KPI analytics pipeline SPPQ,KPI (b) User-modeled SPPQ,KPI in StreamPipes

Figure 5: Product quality inspection and KPI analytics pipeline SPPQ,KPI as abstract definition (5a) as well as the implementa-
tion within StreamPipes (5b). SPPQ,KPI consists of eight pipeline elements: instantiated ROS adapter sources (ωa1 , ω

a
2), proces-

sors (ωp3 , ω
p
4 , ω

p
6) as well as sinks (ωs5 , ω

s
7 , ω

s
8) including the individual requirements ρ and user-defined configurations δ .

Orchestrator Manager. Since we leverage container technology
for the ease of orchestration and deployment, we rely on a dedi-
cated container orchestrator to handle the heavy lifting of actually
starting/stopping the runtime container instances containing the
dedicated pipeline elements. Thereby, the orchestrator manager im-
plements a generic container orchestrator interface with dedicated
methods to handle incoming HTTP requests on the /deploy and
/remove endpoints from the backend. Additionally, the interface
can easily be extended to address additional functionality. This
allows the orchestrator manager to be implemented for any state-
of-the-art container orchestration technology.

Pipeline Element Manager. The pipeline element manager is re-
sponsible for pipeline element life cycle management. Once the
pipeline element runtime containers are deployed, they register
their availability including semantic descriptions about contained
pipeline elements at the pipeline element manager (/register),
that further propagates it to the central backend. Now, when a
stream processing pipeline is deployed, the node controller API
gets an invocation request (/invoke) for a specific pipeline element
to be started that the pipeline element manager forwards along-
side the invocation graph containing information about the corre-
sponding stream processing pipeline, the event schema and event
grounding (transport format, protocol, topic to subscribe/publish)
to the dedicated runtime container. In Figure 4, we see pipeline
elements ω1, ω2 and ω3 in running stage, while others were not
yet invoked. Only when the user stops the corresponding stream
processing pipeline, the respective pipeline elements are stop their
job. Similarly as before, the pipeline management sends a detach
request (/detach) containing the running element id that is further
distributed to dedicated runtime containers to stop the pipeline ele-
ment. Lastly, when a pipeline element runtime container is removed
from a node, the pipeline element manager deregisters them from
the backend such that they are not available anymore (/remove).

Resource Monitor and Node Janitor. The node controller also con-
tains a resource monitor to observe the current node resource con-
sumption, that can be assessed by calling the /status endpoint. Be-
sides, the ease of deployment that the container technology brings,
it also introduces the challenge of not littering the host with partly
downloaded (dangling) images and volumes. In this respect, this
can easily lead to large amounts of disk storage to be used for local
image cache or old host volumes of previously mapped contain-
ers. Especially on resource-constrained industrial edge nodes that
are oftentimes specialized hardware of Raspberry-Pi-like devices
with storage in the low gigabyte range, this can be a serious issue.
Hence, the node janitor is a scheduled service that gets triggered at
predefined intervals and cleans the space on the node.

6 EVALUATION
To demonstrate how to manage pipeline elements of decomposed
stream processing pipelines over a heterogenous, geo-distributed
infrastructure, we implemented the product quality inspection use
case (see UC2 Section 3) in combination with a continuous calcu-
lation of specific key performance indicators (KPI) for an overall
process and quality assessment.

6.1 Collaborative Robot based Product Quality
Inspection and KPI Analytics Pipeline

In our validation setup, a Universal Robots UR5e [27] (flexible collab-
orative robot arm) is used to autonomously assemble an industrial
product consisting of various parts including a mainboard, a hous-
ing and a housing cover. In the last step of the product assembly, the
UR5e picks a housing cover out of a load carrier box to finalize the
assembly process thereby putting it onto the housing itself where
the mainboard has already been inserted. In order for the housing
cover to stay in place it is equipped with a spring whose actual
force is of importance for the cohesion of the end product.

171

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

Fortunately, testing the spring force can be realized by leveraging
a specific gripper module for the UR5e where the effective gripping
force (while picking the housing cover) is continuously measured
via a force sensor deployed in the gripper’s fingers. Thereby, the
sensor measurements of the gripper module (gripper stream) as
well as the robot’s internal state machine (state stream) are ac-
cessed via the Robot Operating System (ROS) to be analyzed as
depicted in Figure 5a. While the first is a continuous stream of
gripper events the latter represent discrete state change events to
retrieve knowledge about the current process step. Thus, the overall
goals are as follows.

(1) quality assurance: assess wether a housing cover is ok/not
ok based on the aggregated force measurement when per-
forming the quality check and inform the robot about the
test result.

(2) process assessment: calculate relevant process/quality KPI
(e.g., scrap rate, first pass yield, average quality check dura-
tion) for general monitoring and potential adjusting levers
for process optimization.

To realize these goals, we decomposed the product quality in-
spection and KPI analytics pipeline SPPQ,KPI into eight individual
pipeline elements (see Figure 5a).

Adapter sources. First, two instantiated ROS adapter sources ωa1
and ωa2 with a requirement to be able to access ROS connect to the
UR5e control server to gather both the gripper stream as well as
state stream.

Processors. Next, the input streams need to be merged, s.t. the
gripper stream is enriched by the current robot state inωp3 needing a
valid robot state (e.g., "picking start/end", "quality check start/end")
as a data stream requirement. The enriched stream is then used by
processor ωp4 , where it is buffered in memory for the state duration
deriving descriptive statistics (e.g., min, max, average, stddev, vari-
ance) of the force measurements as well as performing the actual
quality check based on a user-defined threshold that is compared
against the average force during the quality check. For the given
use case, the domain experts determined a threshold value of 10
Newton to differentiate between "ok" or "not ok" checked parts.

Q(x) =

{
ok if x̄f orce > 10N
nok otherwise

where x̄ is the mean value of force observations {x1, . . . ,xn } within
the quality check time interval ∆Tqc as shown in Figure 6. Lastly,
based on the statistics, the quality check results as well as the time
durations, we can calculate relevant KPI’s, e.g., completed cycles,
scrap total/rate, first pass yield total/rate and average process times,
where we also formulate a data stream requirement, s.t. we expect
the input stream to contain a valid quality test result.

Sinks. Lastly, the pipeline consists of three sinks. The quality test
results are fed back to ROS in ωs5 on the one hand also formulating
a data stream requirement towards a valid quality test result, and
on the other hand the requirement to be able to access the ROS
running on the UR5e control server. Besides, the calculated KPI’s
are visualized in a central management dashboard ωs7 and stored in
a database ωs8 .

0
8

16
24
32
40

fo
rc

e
[N

]

10

ΔTqc
1

ok
ΔTqc

2
ok

ΔTqc
3

ok
ΔTqc

4
nok

… ΔTqc
8

nok
… ΔTqc

12
nok

…

force
avg force
threshold

3
6
9

12
15

w
id

th
 [

m
m

]

09:30:13 09:30:58 09:31:43 09:32:28 09:33:13
timestamp (event-time)

−4
−2

0
2
4

sp
ee

d
[m

m
/s

]
Figure 6: Excerpt of the first 12/99 performed quality checks
executed by anUR5ewith a gripper producing event streams
(gripper force, width and speed). Defined quality criteria for
the housing cover to pass is an average x̄f orce > 10 (see line)
within the active time period of the quality check. High-
lighted time intervals show "not ok" results.

6.2 Validation Setup
Data. To create a reproducible dataset while still embracing real-

world shop floor data, we set up a configurable test bed in the
context of collaborative robot-based parts assembly and quality
inspection thereby repeatedly testing 4 parts in a rows, where the
4th part contains a quality defect, i.e. a missing spring in the housing
cover as can be seen in force profile in Figure 6.5 We were able
to gather real measurements from a manufacturing plant over a
significant time period, which were subsequently stored in a so-
called ROS bag. For the sake of the evaluation, we cut out a slice of
roughly 27minutes of the original ROS bag containing 99 performed
quality checks including gripper and state machine trigger event
as shown in Table 3.

Table 3: UR5e+Gripper ROS bag measurements.

Topic Events Event Rate Event Size

/gripper 45.458 28/sec 285 byte
/trigger 200 every 7sec 200 byte

Implementation. We implemented the proposed node model and
architecture and integrated StreamPipes Edge Extensions in the
open source framework Apache StreamPipes (incubating)6. Thus,
every node controller that is deployed as a containerized StreamPipes
5Varying force profiles are due to differences in 3D printed gripper fingers.
6https://github.com/apache/incubator-streampipes/tree/edge-extensions

172

https://github.com/apache/incubator-streampipes/tree/edge-extensions

Industry Paper: Managing Geo-Distributed Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

(a) Node overview in StreamPipes (b) Deployment settings in StreamPipes

Figure 7: Implementation of our node model as part of the node overview (7a) in StreamPipes showing a two node cluster
consisting of a cloud (server) node and one edge node (Raspberry Pi 4) including hardware and software related resource de-
scriptions, semantic tags, e.g., machine=UR5e, as well as accessible sensor/actuator resources, e.g., ros as well as the deployment
settings for target node selection (7b).

core service on target compute nodes registers itself as a new avail-
able node at the central StreamPipes backend in combination with
its node metadata description. Relevant hardware resource infor-
mation are gathered by using OSHI7 and further complemented
by using standard linux commands. Besides, we implemented a
specific container orchestrator (DockerOrchestratorManager) to
interface with the local Docker daemon to realize pipeline element
life-cycle management (see Section 5.2), periodically clean dangling
volumes and/or images, and retrieving relevant software informa-
tion such as the availability of NVIDIA docker container runtime
to also know wether to run containerized GPU workloads on a
specific node. Other than that, we provide possibilities for system
operators to attach semantic tags about the location or accessible
sensor/actuator resources in the form of environment variables,
with the result depicted in Figure 7a showing a three node cluster
consisting of a cloud node and two edge nodes with corresponding
semantic tags. In addition, we realized the pipeline SPPQ,KPI in
StreamPipes as shown in Figure 5b. For instance, a configurable
adapter was added to easily replay persisted data streams inside
the ROS bag for various experimental settings.

Setup and Scenarios. For our validation, we use the following
setup. We have a two node cluster consisting of one cloud node
(x86_64), that is running Ubuntu 16.04, with 32GiB memory, 12
cores with 885GiB useful disk storage. Further, we use Raspberry
Pi Model 4 (arm32) as an edge node running Raspbian Buster 10
with 4GiB memory, 4 cores with 59GiB useful disk storage. Besides
the two nodes forming the cluster, we use a Raspberry Pi 3 Model
B+ to replay our ROS bag thus simulation the native ROS control
server unit. StreamPipes core container such as the pipeline man-
agement backend and UI were pre-downloaded and installed on
the cloud node. The individual pipeline element runtime container

7https://github.com/oshi/oshi

of SPPQ,KPI are both downloaded on cloud node and the edge
node. As part of the current development in StreamPipes we also
integrated support for the MQTT message protocol. Hence, we use
Eclipse mosquitto8 as a node broker. For our experimental settings,
we consider the following mapping of the SPPQ,KPI pipeline on
the two node cluster:

Table 4: Mapping of SPPQ,KPI on two node cluster.

Node Pipeline Elements

edge node adapter sources (ROS gripper, state stream)
processors (enrich, stats & quality check)
sink (ROS)

cloud node processor (KPI calculation)1
sinks (dashboard, datalake)

Table 5: Experimental scenarios.

Name Scenario

cluster-local local network
cloud-edge 200 ± 10ms delay
cloud-edge++ cloud-edge + KPI processor on edge node

For our tests, we define 3 scenarios (see Table 5). In the cluster-
local scenario we setup a local cluster deployment, where both the
edge and cloud node reside on the (company) network with an
average round trip time of 0.29ms over 50 ping runs. Both in the
cloud-edge as well as cloud-edge++ scenario, we add a delay between
the two nodes of 200ms with random ±10ms uniform distribution
8https://mosquitto.org/

173

https://github.com/oshi/oshi
https://mosquitto.org/

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

3500

4000

4500

cluster-local cloud-edge cloud-edge++

750

1000

tim
e

[m
s]

Figure 8: SPPQ,KPI pipeline starting times.

by using Linux traffic control leading to a realistic setup, while in
the latter as opposed to the initial mapping we now also run the
KPI calculation on the edge node leaving only the dashboard and
datalake sink on the cloud node.

In all three scenarios, StreamPipes core container are running
on the cloud node. Thereby, pipeline modeling and deployments
are triggered manually by respecting the mapping requirements
of Table 4 and selecting the dedicated target nodes for pipeline
element invocation as shown in Figure 7b. We evaluate two central
questions:

• How does the delay affect pipeline starting times (here based
on the SPPQ,KPI)?

• How much load in terms of memory and CPU consumption
is put on the nodes in total and how much is consumed by
the node controller container?

6.3 Results and Discussion
We measured the time difference between triggered deployment
requests and the succeeding response messages from all involved
pipeline elements over 20 runs. Thereby, an element specific invo-
cation graph containing detailed information such as the transport
protocol (here MQTT) and topic name to subscribe/publish to is
sent to each pipeline element from the pipeline management, where
the runtime wrapper for the element is running. In our evaluation
setup, this graph represents an average payload of 21kB. Results
for the pipeline starting times are shown in Figure 8.

As suspected, we see an increase in overall starting times due to
the introduced delay. In the ideal world of the cluster-local scenario,
we measured a median starting time of 775ms, we calculated a
median of 3606ms in cloud-edge and 3962ms in cloud-edge++. In
the latter, the slight increase occurs due to the additional network
request to invoke the KPI processor on the edge node. Over all
scenarios, there are some outliers being disproportionately higher
than other measurements that are representing the first test run,
where the complex invocation graph structure is built and then
cached for subsequent uses. While the current implementation
of StreamPipes and the node controller only accounts for static
pipeline element deployment, the results provide valuable estimates
as the foundation for extensions towards dynamic pipeline element
relocation to other target node locations during runtime in future
work.

Further, for each scenario we used the ROS bag and replayed it
thereby collecting current resource status information in terms of
memory and CPU usage on (i) node-level by calling the /status
endpoint of the resource manager built-in node controller every
5 sec, as well as (ii) container-level using Docker stats9 feature in
order to gain insights on the dedicated node controller resource
consumption on a more fine-grained level. The results are respec-
tively shown in Figure 9a as well as Figure 9b. On node level, we
clearly see a separation of consumed CPU and memory between
cloud and edge node due to the varying hardware capabilities, how-
ever, between the evaluated scenarios there is merely a difference
noticeable.

The average CPU consumption on the cloud node (0.5%) as well
as its average memory consumption (2.13GiB) remains relatively
stable throughout pipeline execution. In addition, the average mem-
ory usage on the edge node is also staying at a steady level (1.32GiB).
Only the CPU consumption is varying (up to 27.4%) with an average
at around 10%. The main influencing factor are the source adapters
that constantly stream data from ROS as well as the processing
in terms of calculating the descriptive statistics over the buffered
events (495 byte buffer containing 200 − 300 gripper events) at the
end of each quality check.

The node controller was designed to be lightweight in terms of
consumed resources in order to be also well-suited for resource
limited edge nodes that reflects in Figure 9b. Both, the CPU and
memory footprint on cloud node and edge node (Raspberry Pi) are
at a low level with a median CPU consumption of 0.86% on the edge
node and 0.22% on the cloud node. Besides some outliers on the
edge node, median memory usage remains stable over all scenarios
for the edge (194.5MiB) and cloud node (144.4MiB). We consider
the actual load to increase slightly in the course of integrating
more functionality into the node controller itself that also allow
for decentralized pipeline element management when the central
pipeline management is not available due to network partitions.

6.4 Industry Adoption
Apache StreamPipes (incubating) was initially developed by the au-
thors of this paper in multiple research as well as industry projects
over the last couple of years. Recently it was handed over to the
Apache Software Foundation as an incubating project with the
goal to grow a bigger and diverse community. The project has over
3.300 installations and is already used in multiple manufacturing
companies to monitor the production process. New and innovative
ideas and features (as presented in this paper) are still developed
in academia with the goal to integrate them into to the production
grade tool once the developed concepts are properly evaluated. The
basic idea for the contribution of this paper emerged from require-
ments that arose in multiple industrial projects, where a flexible
solution for the management of stream processing pipelines in edge
processing scenarios was required. Those companies often have
many different machines and production lines which are distributed
all over the globe. This makes it very hard to manage the deploy-
ment of analytics tasks. A flexible semi-automated solution for
dynamic edge deployments is required which is capable to adapt to
changes in the IIoT infrastructure as well in the performed analyses.

9Currently, the node controller does not collect stats exposed by the Docker daemon.

174

Industry Paper: Managing Geo-Distributed Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

0 8 16 24 32
CPU usage [%]

1

2

m
em

or
y

us
ag

e
[G

iB
]

cloud node

edge node

cloud-edge
cloud-edge++
cluster-local

(a) cloud and edge node

edge

1.0

2.0

3.0

CP
U

us
ag

e
[%

]

edge
194.5

194.7

194.8

m
em

or
y

us
ag

e
[M

iB
]

cloud
0.0

1.0

2.0

CP
U

us
ag

e
[%

]

cloud

140.0

144.0

148.0

152.0

m
em

or
y

us
ag

e
[M

iB
]

(b) node controller container

Figure 9: Consumed resources (CPU, memory usage) on the two node cluster during SPPQ,KPI execution for the scenarios
cluster-local, cloud-edge, cloud-edge++ (9a) as well as the consumed resources by the node controller container as an aggregate
over all scenarios (9b).

7 RELATEDWORK
Distributed stream processing have been broadly studied in both
the industrial as well as the academic research community with
emerging novel application areas, such as the IoT [8]. In [12], an
extension of distributed dataflow programming paradigm for Node-
RED is proposed thereby providing mechanism to deploy defined
flows over heterogeneous compute resources by specifying static
requirements and constraints. In [31] a framework for dynamic
resource provisioning and automated container-based application
deployment is proposed, presenting a more fine-grained descrip-
tion of requirements including prioritization to enable preemption
as well as privacy constraints in terms of the actual placement in
the infrastructure hierarchy. A container-based architecture for
supporting autonomic data stream processing applications on fog
computing infrastructure is shown in [5], yet only exploiting na-
tive Docker features to scale and migrate application containers.
In [20], an edge-based programming framework that allows users
to define how data streams are processed based on the content
and the location of the data is introduced. In addition, in [24] a
programming infrastructure for the geo-distributed computational
continuum is presented, that manages the application components
in a situation-aware manner. While generally applications are also
deployed and managed using a container orchestrator, the pro-
posed approach lacks managing multi-component applications as it
is the case in our presented application model of stream processing
pipelines. In [16] an approach based on the declarative TOSCA
standard for the automated deployment of distributed applications
on heterogeneous target environments consisting of public and
private clouds is shown, thereby tackling the issue of deploying
components in environments having restricted inbound communi-
cation capabilities. While the presented approach greatly addresses
the accessibility and security aspects especially in IIoT application

deployments, it does not account for dependent multi-component
application deployments regarding stream processing pipelines.
Further, [18] investigates complex event processing over fog infras-
tructures and present ProgCEP, a programming model facilitating
the development of operator placement algorithms. In our previous
work we presented a conceptual architecture to support context-
aware, dynamic management of stream processing pipelines in the
fog [30]. Besides, there exists numerous other works in the area of
application orchestration and deployment such as FogFrame [25],
Foggy [23], FogFlow [6], Fogsy [29].

Besides the research community, several companies offer fog
computing services and tools for application orchestration and de-
ployment, such as Google Cloud IoT, Amazon Greengrass, Microsoft
Azure IoT Edge, IBM Edge Computing, Crosser [7], Foghorn [10]
or Nebbiolo [19]. While these services provide the possibility to
realize edge deployments, they are not targeted towards flexible
deployment of stream processing pipelines. Existing open source
container cluster management orchestrators that are designed to
address challenges evolving around edge to cloud deployments
either based on/or extending Kubernetes such as kubeEdge [17],
k3s [14] or ioFog [13] focus mainly on the infrastructure level and
are not tailored to streaming applications.

Overall, the aforementioned approaches neglect providing do-
main experts with a solution to easily deduce meaningful insights
within their industry domain. To the best of our knowledge, existing
approaches lack a generic and conceptual node model describing
node resources and metadata information and do not account for
the unique challenges of managing industrial stream processing
pipelines over the underlying heterogeneous infrastructure. In our
case, these pipelines consist of multiple decomposed but dependent
analytical functions that need to managed in a holistic manner
thereby still allowing domain experts to easily model and deploy

175

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Patrick Wiener, Philipp Zehnder, and Dominik Riemer

applications in a self-service manner while abstracting them from
the orchestration, deployment and monitoring of the containerized
pipeline elements.

8 CONCLUSION
In this paper, we presented StreamPipes Edge Extensions, a novel
contribution to the open source IIoT toolbox Apache StreamPipes
that allows domain experts to create stream processing pipelines
and assign individual pipeline elements to available, geo-graphically
distributed nodes. We introduced an application model for stream
processing pipelines as well as a fog cluster resource model repre-
senting capabilities of compute nodes. Besides, we presented the
node controller architecture of SEE for pipeline element life cycle
and node management to realize edge deployments of individual
pipeline elements. We validated our approach in a real industrial
setup involving a collaborative robot and demonstrated the feasi-
bility of edge deployments with the result of low overall resource
overhead for the node controller.

As part of our future work, we will switch from manual node
selection upon startup of a pipeline to an advanced deployment
approach by realizing certain deployment strategies, e.g., minimum-
latency, or maximum-edge utilization, and also focus on allowing to
offload pipeline elements to other suitable cluster nodes at runtime
based on changes in the requirements or infrastructural context
(e.g., mobile edge nodes, node maintenance, etc).

REFERENCES
[1] Tayebeh Bahreini and Daniel Grosu. 2017. Efficient Placement of Multi-

Component Applications in Edge Computing Systems. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing (SEC ’17). Association for Computing
Machinery, San Jose, California, 1–11. https://doi.org/10.1145/3132211.3134454

[2] S. Bhattacharjee. 2018. Practical Industrial Internet of Things Security: A Prac-
titioner’s Guide to Securing Connected Industries. Packt Publishing. https:
//books.google.de/books?id=ZO1mDwAAQBAJ

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. Proceedings of the first edition
of the MCC workshop on Mobile cloud computing (2012), 13–16. https://doi.org/
10.1145/2342509.2342513 arXiv:1502.01815v3

[4] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera. 2019. How to Place
Your Apps in the Fog – State of the Art and Open Challenges. Software: Practice
and Experience 50, 5 (Nov. 2019), 719–740. https://doi.org/10.1002/spe.2766
arXiv:1901.05717

[5] Antonio Brogi, Gabriele Mencagli, Davide Neri, Jacopo Soldani, and Massimo
Torquati. 2018. Container-Based Support for Autonomic Data Stream Processing
Through the Fog. Euro-Par 2017: Parallel Processing Workshops (2018), 17–28.
https://doi.org/10.1007/978-3-319-75178-8_2

[6] Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and
Atsushi Kitazawa. 2018. FogFlow: Easy Programming of IoT Services Over Cloud
and Edges for Smart Cities. IEEE Internet of Things Journal 5, 2 (April 2018),
696–707. https://doi.org/10.1109/JIOT.2017.2747214

[7] Crosser.io. 2020. Official crosser website. Retrieved May 28, 2020 from https:
//crosser.io/

[8] Miyuru Dayarathna and Srinath Perera. 2018. Recent Advancements in Event
Processing. Comput. Surveys 51, 2 (Feb. 2018), 33:1–33:36. https://doi.org/10.
1145/3170432

[9] Koustabh Dolui and Soumya Kanti Datta. 2017. Comparison of Edge Computing
Implementations: Fog Computing, Cloudlet and Mobile Edge Computing. In
2017 Global Internet of Things Summit (GIoTS). IEEE, Geneva, Switzerland, 1–6.
https://doi.org/10.1109/GIOTS.2017.8016213

[10] FogHorn. 2020. Official FogHorn website. Retrieved May 28, 2020 from https:
//www.foghorn.io/

[11] Erich Gamma, Richard Helm, Johnson Ralph, and John Vlissides. 1995. Design
Patterns : Element of Reusable Object Oriented Software.

[12] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. 2015.
Developing IoT Applications in the Fog: A Distributed Dataflow Approach. In
Proceedings - 2015 5th International Conference on the Internet of Things, IoT 2015.
IEEE, 155–162. https://doi.org/10.1109/IOT.2015.7356560

[13] ioFog. 2020. Official ioFog website. Retrieved May 28, 2020 from https://iofog.org/
[14] K3s. 2020. Official k3s website. Retrieved May 28, 2020 from https://k3s.io/
[15] Amir Karamoozian, Abdelhakim Hafid, and El Mostapha Aboulhamid. 2019. On

the Fog-Cloud Cooperation: How Fog Computing Can Address Latency Concerns
of IoT Applications. In 2019 Fourth International Conference on Fog and Mobile
Edge Computing (FMEC). IEEE, Rome, Italy, 166–172. https://doi.org/10.1109/
FMEC.2019.8795320

[16] Kálmán Képes, Uwe Breitenbücher, Frank Leymann, Karoline Saatkamp, and
Benjamin Weder. 2019. Deployment of Distributed Applications Across Public
and Private Networks. In 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC). 236–242. https://doi.org/10.1109/EDOC.2019.
00036

[17] KubeEdge. 2020. Official KubeEdge website. Retrieved May 28, 2020 from
https://kubeedge.io/

[18] Manisha Luthra and Boris Koldehofe. 2019. ProgCEP: A Programming Model
for Complex Event Processing over Fog Infrastructure. In Proceedings of the 2nd
International Workshop on Distributed Fog Services Design - DFSD ’19. ACM Press,
Davis, CA, USA, 7–12. https://doi.org/10.1145/3366613.3368121

[19] Nebbiolo. 2020. Official Nebbiolo website. Retrieved May 28, 2020 from https:
//www.nebbiolo.tech/

[20] Eduard Gibert Renart, Javier Diaz-Montes, and Manish Parashar. 2017. Data-
Driven Stream Processing at the Edge. In 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC). IEEE, Madrid, Spain, 31–40. https://doi.org/
10.1109/ICFEC.2017.18

[21] Dominik Riemer, Ljiljana Stojanovic, and Nenad Stojanovic. 2014. SEPP:
Semantics-Based Management of Fast Data Streams. In Proceedings - IEEE 7th
International Conference on Service-Oriented Computing and Applications, SOCA
2014. IEEE, 113–118. https://doi.org/10.1109/SOCA.2014.52

[22] Farah Ait Salaht, Frédéric Desprez, and Adrien Lebre. 2019. An Overview of
Service Placement Problem in Fog and Edge Computing. [Research Report]
RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France. 2019, pp.1-43.
ffhal-02313711v2f (2019), 47.

[23] Daniele Santoro, Daniel Zozin, Daniele Pizzolli, Francesco De Pellegrini, and
Silvio Cretti. 2017. Foggy: A Platform for Workload Orchestration in a Fog
Computing Environment. In Proceedings of the International Conference on Cloud
Computing Technology and Science, CloudCom, Vol. 2017-Decem. 231–234. https:
//doi.org/10.1109/CloudCom.2017.62 arXiv:1810.00179

[24] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and
Beate Ottenwälder. 2016. Incremental Deployment and Migration of Geo-
Distributed Situation Awareness Applications in the Fog. In Proceedings of
the 10th ACM International Conference on Distributed and Event-Based Sys-
tems - DEBS ’16. ACM Press, New York, New York, USA, 258–269. https:
//doi.org/10.1145/2933267.2933317

[25] Olena Skarlat, Vasileios Karagiannis, Thomas Rausch, Kevin Bachmann, and
Stefan Schulte. 2018. A Framework for Optimization, Service Placement, and
Runtime Operation in the Fog. In 2018 IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC). IEEE, 164–173. https://doi.org/10.1109/
UCC.2018.00025

[26] Olivier Terzo, Karim Djemame, Alberto Scionti, and Clara Pezuela. 2019. Hetero-
geneous Computing Architectures: Challenges and Vision. CRC Press.

[27] Universal Robots. 2020. Official Universal Robots website. Retrieved May 28, 2020
from https://www.universal-robots.com/

[28] Shiqiang Wang, Murtaza Zafer, and Kin K. Leung. 2017. Online Placement of
Multi-Component Applications in Edge Computing Environments. IEEE Access 5
(2017), 2514–2533. https://doi.org/10.1109/ACCESS.2017.2665971

[29] Patrick Wiener, Zehnder Philipp, Heyden Marco, Philipp Patrick, and Riemer
Dominik. 2020. Fogsy: Towards Holistic Industrial AI Management in Fog and
Edge Environments. [Technical Report] KuVS-Fachgespräch Fog Computing 2020.
Wien, Essen.

[30] Patrick Wiener, Philipp Zehnder, and Dominik Riemer. 2019. Towards Context-
Aware and Dynamic Management of Stream Processing Pipelines for Fog Com-
puting. In 2019 IEEE 3rd International Conference on Fog and Edge Computing
(ICFEC). 1–6. https://doi.org/10.1109/CFEC.2019.8733145

[31] Emre Yigitoglu, Mohamed Mohamed, Ling Liu, and Heiko Ludwig. 2017. Foggy:
A Framework for Continuous Automated IoT Application Deployment in Fog
Computing. In Proceedings - 2017 IEEE 6th International Conference on AI and
Mobile Services, AIMS 2017. 38–45. https://doi.org/10.1109/AIMS.2017.14

[32] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2018. All One Needs to Know
about Fog Computing and Related Edge Computing Paradigms: A Complete
Survey. (Aug. 2018). arXiv:1808.05283 http://arxiv.org/abs/1808.05283

[33] Philipp Zehnder, Patrick Wiener, Tim Straub, and Dominik Riemer. 2020.
StreamPipes Connect: Semantics-Based Edge Adapters for the IIoT. In The Se-
mantic Web, Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko
Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez (Eds.).
Springer International Publishing, Cham, 665–680.

176

https://doi.org/10.1145/3132211.3134454
https://books.google.de/books?id=ZO1mDwAAQBAJ
https://books.google.de/books?id=ZO1mDwAAQBAJ
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://arxiv.org/abs/1502.01815v3
https://doi.org/10.1002/spe.2766
https://arxiv.org/abs/1901.05717
https://doi.org/10.1007/978-3-319-75178-8_2
https://doi.org/10.1109/JIOT.2017.2747214
https://crosser.io/
https://crosser.io/
https://doi.org/10.1145/3170432
https://doi.org/10.1145/3170432
https://doi.org/10.1109/GIOTS.2017.8016213
https://www.foghorn.io/
https://www.foghorn.io/
https://doi.org/10.1109/IOT.2015.7356560
https://iofog.org/
https://k3s.io/
https://doi.org/10.1109/FMEC.2019.8795320
https://doi.org/10.1109/FMEC.2019.8795320
https://doi.org/10.1109/EDOC.2019.00036
https://doi.org/10.1109/EDOC.2019.00036
https://kubeedge.io/
https://doi.org/10.1145/3366613.3368121
https://www.nebbiolo.tech/
https://www.nebbiolo.tech/
https://doi.org/10.1109/ICFEC.2017.18
https://doi.org/10.1109/ICFEC.2017.18
https://doi.org/10.1109/SOCA.2014.52
https://doi.org/10.1109/CloudCom.2017.62
https://doi.org/10.1109/CloudCom.2017.62
https://arxiv.org/abs/1810.00179
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1109/UCC.2018.00025
https://doi.org/10.1109/UCC.2018.00025
https://www.universal-robots.com/
https://doi.org/10.1109/ACCESS.2017.2665971
https://doi.org/10.1109/CFEC.2019.8733145
https://doi.org/10.1109/AIMS.2017.14
https://arxiv.org/abs/1808.05283
http://arxiv.org/abs/1808.05283

	Abstract
	1 Introduction
	2 Background
	3 Motivating Scenarios
	4 Formal Model Description
	4.1 Stream Processing Application Model
	4.2 Fog Cluster Resource Model

	5 Node Management
	5.1 Node Model
	5.2 Node Controller Architecture

	6 Evaluation
	6.1 Collaborative Robot based Product Quality Inspection and KPI Analytics Pipeline
	6.2 Validation Setup
	6.3 Results and Discussion
	6.4 Industry Adoption

	7 Related Work
	8 Conclusion
	References

