
RocketBufs: A Framework for Building Efficient, In-Memory,
Message-Oriented Middleware

Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany
Cheriton School of Computer Science, University of Waterloo

ABSTRACT
As companies increasingly deploy message-oriented middleware
(MOM) systems in mission-critical components of their infrastruc-
tures and services, the demand for improved performance and func-
tionality has accelerated the rate at which new systems are being
developed. Unfortunately, existing MOM systems are not designed
to take advantages of techniques for high-performance data center
communication (e.g., RDMA). In this paper, we describe the design
and implementation of RocketBufs, a framework which provides
infrastructure for building high-performance, in-memory Message-
Oriented Middleware (MOM) applications. RocketBufs provides
memory-based buffer abstractions and APIs, which are designed
to work efficiently with different transport protocols. Applications
implemented using RocketBufs manage buffer data using input
(rIn) and output (rOut) classes, while the framework is responsible
for transmitting, receiving and synchronizing buffer access.

We use our current implementation, that supports both TCP and
RDMA, to demonstrate the utility and evaluate the performance of
RocketBufs by using it to implement a publish/subscribe message
queuing system called RBMQ and a live streaming video application.
When comparing RBMQ against two widely-used, industry-grade
MOM systems, namely RabbitMQ and Redis, our evaluations show
that when using TCP, RBMQ achieves broker messaging through-
put up to 1.9 times higher than RabbitMQ and roughly on par with
that of Redis, when configured comparably. However, RBMQ sub-
scribers require significantly less CPU resources than those using
Redis, allowing those resources to be used for other purposes like
processing application data. When configured to use RDMA, RBMQ
provides throughput up to 3.7 times higher than RabbitMQ and up
to 1.7 times higher than Redis. We also demonstrate the flexibility
of RocketBufs by implementing a live streaming video service and
show that it can increase the number of simultaneous viewers by
up to 55%.

CCS CONCEPTS
•Networks→Programming interfaces; •Computingmethod-
ologies → Distributed computing methodologies; • Information
systems→ Data management systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401744

KEYWORDS
message-oriented middleware, in-memory, event-based systems,
message queuing, publish subscribe, live streaming video

ACM Reference Format:
Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany. 2020. Rock-
etBufs: A Framework for Building Efficient, In-Memory, Message-Oriented
Middleware. In The 14th ACM International Conference on Distributed and
Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3401025.3401744

1 INTRODUCTION
Message-Oriented Middleware (MOM) systems, also often referred
to as publish/subscribe, message-queuing, or event-based systems,
are a popular class of software designed to support loosely-coupled
messaging in modern distributed applications. Examples of appli-
cations and services that utilize MOM systems include IBM’s cloud
functions [29], the Apache OpenWhisk serverless framework [10],
the Hyperledger blockchain framework [7] and streaming media
systems [60]. These applications all follow a produce-disseminate-
consume (PDC) design pattern, where one or more producers (or
publishers) send data as messages to an MOM substrate (often com-
prised of message brokers) for dissemination to a possibly large
number of consumers (or subscribers). To scale to high loads some
MOM systems support the distribution of messages to other brokers
using topologies best suited to the application.

Many modern applications have high performance and scalabil-
ity demands with regard to message delivery. Facebook’s pub/sub
system, for example, delivers over 35 Gigabytes per second within
their event processing pipeline [63], while Twitch, a live streaming
video service, handles hundreds of billions of minutes worth of
video content a year [22]. Other classes of applications, such as
online gaming [23] and stock trading [67], require messages to
be delivered with extremely low latency. As a result, constructing
high-performance and scalable MOM systems to deal with emerg-
ing workloads is of great interest in both industry and academia.
Over the past five years alone, many new open-source MOM sys-
tems have been developed [9, 11, 20, 38, 61, 68], and cloud providers
have continued to introduce new MOM services as part of their
infrastructure [3, 4, 24, 25].

Often in MOM deployments, data is moved between hosts that
reside within a data center [39, 62]. One approach to building
high-performance MOM systems for such environments is to lever-
age data center networking capabilities, especially those that of-
fer kernel-bypass features to enable high-throughput and/or low-
latency communication such as Remote Direct Memory Access
(RDMA) [44] or emerging technologies, accelerators and APIs such
as DPDK [69], F-Stack [21], and Solarflare/TCPDirect [64]. Such
technologies are becoming increasingly important to reduce mes-
sage dissemination costs to the rapidly growing numbers of brokers

121

https://doi.org/10.1145/3401025.3401744
https://doi.org/10.1145/3401025.3401744

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

and subscribers required by modern applications. Unfortunately,
commonly-used MOM systems do not take advantage of these ca-
pabilities and instead use kernel-based TCP, which in many cases
incurs protocol processing and copying overhead (even for com-
munication within a data center [27]), limiting throughput and
resulting in higher latency.

One reason current MOM systems avoid using emerging tech-
nologies is the complexity of supporting multiple communication
substrates in a single MOM implementation. For instance, the native
RDMA verb interface uses abstractions and APIs fundamentally
different from the socket abstraction that are quite complicated to
use [1]. As a result, significant engineering effort would be required
for both new and existing MOM systems to support RDMA and
TCP, since two separate data transfer implementations would be re-
quired. Similarly, emerging technologies often initially provide new
abstractions and custom APIs that require additional modifications
to the MOM system implementation (e.g., DPDK [69]).

We believe it is important for MOM systems to utilize RDMA
and other existing and emerging technologies designed for high-
throughput and/or low-latency data center communication while
not being forced to implement code specific to each technology. To
this end, we propose RocketBufs, a framework to facilitate the easy
construction of high-performance in-memory Message-Oriented
Middleware systems. RocketBufs provides a natural memory-based
buffer abstraction. Application developers control the transmis-
sion and reception of data using input (rIn) and output (rOut)
classes that are associated with buffers. RocketBufs implements
and handles the transfers of buffered data between communicating
nodes and provides mechanisms for flow control. This design al-
lows flexible topologies to be constructed for scaling MOM systems.
RocketBufs’ APIs are agnostic to the underlying transport layer and
developers can configure the framework to use different protocols
or technologies without changing application code.

Figure 1 shows that applications can be built using RocketBufs
which provides rIn and rOut objects. RocketBufs relies on its net-
working layer (RocketNet) for communication. In our prototype,
RocketNet supports TCP and RDMA. In the future, support can be
added to RocketNet for new data center networking technologies
and all applications using RocketBufs can reap the benefits of those
technologies by simply changing a configuration file.

Figure 1: RocketBufs: shaded areas denote future work

Given the continuous development of new MOM systems, we
believe that such a framework would greatly simplify their con-
struction while allowing them to achieve high performance. As
a proof of concept for this approach, we describe our prototype

implementation that includes support for TCP and RDMA. By de-
signing abstractions and APIs that work well with both RDMA and
TCP, two protocols with vastly different programming interfaces,
we believe that other transport layer APIs and technologies like
QUIC [31], DPDK [69], F-Stack [21], and Solarflare/TCPDirect [64]
could also be efficiently supported by the framework, providing
benefits to all applications built using RocketBufs. This paper makes
the following contributions:
• We describe RocketBufs, a framework that facilitates the con-
struction of scalable, high-performance Message-Oriented
Middleware systems.
• We describe a prototype implementation of RBMQ, a pub-
lish/subscribe messaging system built on top of RocketBufs.
We evaluate the performance of RBMQ by comparing it
against RabbitMQ and Redis, two widely-used, industry-
grade MOM systems.
• We demonstrate the flexibility of RocketBufs by using it to
build a second, quite different, application to support the
replication and delivery of live streaming video. Our empiri-
cal evaluation shows that RocketBufs is able to support up to
27% and 55% higher simultaneous viewer throughput than
Redis when using TCP and RDMA, respectively.

2 RELATEDWORK

Networking Technologies and Libraries: The desire to provide
efficient access to networking resources is long-standing concern
and several technologies and libraries have been created for this
reason. In order to provide the best performance possible these
technologies are often accompanied with new abstractions and
APIs. In order to provide some benefits to legacy applications new
libraries are often created on top of the “native” APIs that attempt
to mimic socket abstractions and APIs. Remote Direct Memory
Access (RDMA) is one such example with the native verbs interface
and the rsocket library that provides a socket abstraction on top of
RDMA. Unfortunately, rsocket’s protocol translation and copying
overheads make it inefficient compared to native RDMA [37, 74]
and as a result our implementation uses native RDMA APIs. An-
other library, libfabric [26] provides abstracted access to networking
resources, enabling applications to discover which communication
mechanisms they have access to (including RDMA), form connec-
tions between nodes, transfer data, and monitor transfer comple-
tions. The key differences between the systems described above
and RocketBufs is that RocketBufs provides middleware with much
higher level APIs and abstractions that are designed to naturally
and explicitly support the building of a wide range of efficient
message-oriented systems. Those systems would be better suited
for use in RocketBufs networking layer (RocketNet) upon which
RocketBufs is built.

Similar to RDMA, emerging networking technologies such as
DPDK [69], F-Stack [21] and Solarflare/TCPDirect [64] bypass the
kernel for higher performance and offer low level communication
APIs, that are much lower-level than RocketBufs. Applications
hoping to leverage these technologies need to manually create,
maintain, and make use of networking mechanisms. We believe
that any of these libraries could be used by RocketBufs’ network-
ing component (described in Section 3.5). One of the key goals of

122

RocketBufs: A Framework for Building Efficient, In-Memory, Message-Oriented Middleware DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

RocketBufs is to provide higher level abstractions that allow MOM
developers to concentrate on application logic while RocketBufs
implements and handles data transfers.

RDMA-based Systems andOptimizations: It is well-known that
RDMA is complicated to use [1, 35], and there has been a good deal
of research into improving RDMA usability and performance. For
example, Zhang et al. [76] propose a new high level abstraction for
developing applications that bypass the kernel including RDMA-
based applications, and Remote Regions [1] provides a file-based
interface for interacting with remote memory. Likewise, LITE [71]
provides a user space RDMA abstraction at the cost of giving up
local kernel bypass, while RaMP [45] provides application-directed,
RDMA-backed memory region sharing. Derecho [32] is a system
designed primarily for building data center applications that require
strongly consistent replicated objects. Because its protocols have
been optimized for efficient use with TCP and RDMA they demon-
strate better performance than other competing systems like APUS,
LibPaxos, and ZooKeeper. Derecho does not offer the abstractions
and APIs that RocketBufs does which are explicitly designed to
simplify the implementation of efficient MOM systems. Multiple
systems also explore RDMA within the context of distributed mem-
ory and distributed storage, including, Pilaf [46], FaRM [18, 19],
HERD [34], Nessie [15], and many others [33, 36, 40, 48, 70, 72, 73].
RocketBufs is oriented around ease-of-use and efficiency for build-
ing Message-Oriented Middleware. Furthermore, RocketBufs is net-
work protocol agnostic, and allows efficient data transfer regardless
of the availability of RDMA.

Live Streaming Video: Several attempts have been made to im-
prove the efficiency of live streaming video delivery, but mostly
through means that are complimentary to our own. For example,
Pires et al. [52] examine strategies for selecting efficient bit rate
for transcoding to reduce resource consumption. Netflix, which
does not serve live streaming video, has contributed to this space
in a way, by exploring how to efficiently provide in-kernel TLS
encryption to improve the scalability of web servers delivering
video content [65, 66].

Our design of RocketBufs and use in a live-streaming video ap-
plication is motivated by our previous work on RocketStreams [14],
which uses TCP or RDMA to disseminate live streaming video.
In this paper, we design more general abstractions for use in a
wider range of applications (e.g., the scalable dissemination of data
in MOM and live streaming video systems). RocketBufs, provides
generic support for: producers, brokers, and consumers; the creation
of general topologies; flow control; and synchronization control.

3 ROCKETBUFS
We have three main goals in mind when designing the framework.
First, we want to provide natural abstractions and easy-to-use APIs
which are suitable for developing a variety of MOM systems. A
key property of MOM systems is the independence between com-
municating parties (i.e., publishers and subscribers) in the systems.
Therefore with RocketBufs, publishers in the system should be able
to continuously produce messages without being blocked while
previously produced messages are being delivered. Analogously,
subscribers should be able to subscribe to and continuously receive

new data. Secondly, the framework’s interface should be agnostic
to the underlying transport protocol. The application should be
able to switch transport protocols by simply changing the system’s
configuration without any modifications to the application code.
Finally, the framework should also enable efficient MOM system
implementations using a variety of networking technologies. As a
proof of concept we focus on two very different APIs, sockets (for
TCP) and by taking full advantage of native RDMA APIs.

To achieve these goals, RocketBufs uses an event-driven,memory-
based interface that is strongly influenced by the requirement to
work well with the RDMA-based transport layer, but also allows
the TCP-based transport layer to be efficiently implemented. Rock-
etBufs is a user-space C++ library with an object-oriented program-
ming model. A typical RocketBufs application initializes framework
objects and uses them to communicate with other processes using
communication units called buffers. In designing the APIs, we rec-
ognize that data movement from publishers to brokers and from
brokers to subscribers is analogous to a producer-consumer pat-
tern (where brokers “consume” data from publishers while they
also “produce” data to subscribers). RocketBufs provides two main
classes: rIn and rOut. The rOut class is used by producers to create
buffers and disseminate data, while the rIn class is used by con-
sumers to subscribe to and receive data. Message brokers use both
rIn and rOut objects for data ingestion and dissemination. The
framework also provides support for buffer splicing (discussed in
Section 3.4) to allow message brokers to efficiently forward data.
Figure 2 shows an example of how these objects could be used
in a MOM system. Using rIn and rOut objects, applications can
implement flexible topologies and partitioning logic for scaling out
the MOM system. We now describe the design and implementation
of our framework. More details and discussion concerning design
decisions can be found in Huy Hoang’s thesis [28].

Subscriber	

	Publisher rOut
Broker	1

rIn

rIn

rIn

rOut	Publisher rOut

	Publisher rOut

Subscriber	rIn

Subscriber	rIn

Broker	2					rIn

splice

rOut rIn

Figure 2: Use of rIn and rOut objects in MOM system.

3.1 Buffers in RocketBufs
A buffer is a region of memory used by RocketBufs for storing
incoming and outgoing data. Buffers are encapsulated in rIn/rOut
objects. Each buffer has a 32-bit identifier (defined using the bid_t
data type) and is implemented as an in-memory circular buffer, as
depicted in (Figure 3). Buffers have memory semantics and appli-
cations interact directly with buffers through byte ranges. While
this abstraction is lower-level than a message-based abstraction,
it gives the application complete control over how messages are
formed in the buffer. Data in a buffer represents messages in a FIFO
message queue. Circular buffers are well known, widely used, data
structures that are particularly well suited to producer-consumer
types of problems. As a result, they have been used in a wide vari-
ety of contexts including operating systems and communication

123

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

systems. We also utilize them in RocketBufs because they provide
a bounded space for communication between rIn and rOut objects
(necessary for RDMA) and are useful for implementing buffer flow
control (see Section 3.3).

When a buffer is created, itsmemory is allocated from framework-
managed memory pools. This is done in order to reduce the con-
sumption of RDMA-enabled NIC (called an RNIC) cache resources
when RDMA is used [18]. Each buffer has a free region and a busy
region. For an rOut buffer (which we refer to as an output buffer),
the free region represents the space into which the application can
produce data, while the busy region stores the data that has been
produced and is waiting to be transferred. To produce messages, an
application requests a free segment of the buffer, places the message
in the segment, and signals the framework to deliver it. At that
point the segment is marked busy and queued for delivery by the
framework. Analogously, for an rIn buffer (input buffer) incoming
data is received into the free region and data in the busy region is
consumed and processed by the application.

Figure 3: RocketBufs’ circular buffer.

The boundaries of a segment are defined using an iovec struc-
ture which includes a pointer to the starting address of the segment
and its size. Because a memory segment could begin near the end
of the buffer and wrap around to the beginning, applications are re-
quired to work with memory segments that may not be contiguous.
For this reason RocketBufs defines a structure buf_seg (Listing 1)
to allow applications to directly access buffer memory. The vecs
field is an array of iovecs that contains either one or two iovecs,
indicated in the vec_count field.

Listing 1: Definition of buf_seg
1struct buf_seg {
2struct iovec∗ vecs; // Array of iovecs.
3int vec_count; // Number of iovecs (at most 2).
4};

3.2 rIn and rOut Classes
RocketBufs provides two main classes, rIn and rOut. Applications
create and configure connections between rIn and rOut instances
using APIs provided by the framework. One rOut object can be
connected to one or more rIn object(s). However, one rIn object
can only be connected to a single rOut object. This relationship
is modeled after the publish/subscribe pattern, where a publisher
broadcasts data to one or more subscriber(s). If a subscriber applica-
tion needs to subscribe to data from multiple sources, it can do so
by using multiple rIn instances. After initializing rIn and rOut in-
stances, applications can use the methods exposed by these classes,
shown in Listing 2, to manipulate buffers and manage data trans-
fers. RocketBufs’ key APIs are asynchronous and completion events

related to buffers are handled by registering callback functions. The
asynchronous API design serves two purposes. First, it allows for
continuous data production and consumption by the application.
Secondly, it allows for natural and efficient implementations for
RDMA and TCP.

Listing 2: Key rIn/rOutmethods
1// rOut methods
2void create_buffer(bid_t bid, size_t size);
3buf_seg get_output_segment(bid_t bid, size_t size, bool blocking);
4void deliver(buf_seg &segs, size_t size, void ∗ctx);
5void set_data_out_cb(void (∗cb)(void ∗));
6void splice(rIn &in, bid_t buf_id);
7
8// rIn methods
9void subscribe(bid_t bid, size_t size);
10void set_data_in_cb(void (∗cb)(bid_t, buf_seg));
11void data_consumed(bid_t bid, size_t size);

Before being able to send and receive messages, applications
need to create and subscribe to buffers. An rOut object creates a
buffer by calling rOut::create_buffer and providing the buffer
identifier and the buffer size. An rIn object calls rIn::subscribe
with a specified buffer identifier to register for data updates from
that buffer. We refer to such registrations as subscriptions. Buffer
identifiers are required to be unique per rIn/rOut object and the
framework performs checks for identifier uniqueness when a buffer
is created. The framework assumes that buffer identifiers are cho-
sen and managed by the application. In a real deployment, these
identifiers could be mapped to higher-level communication units
(such as topics in a topic-based MOM system) using other soft-
ware (e.g., a name service), if required. When rIn::subscribe is
called, the framework implicitly allocates memory for the buffer
and shares the local buffer’s metadata with the connected rOut
object. The metadata of a buffer includes the buffer’s address and
size. When RDMA is used, it also includes the remote key of the
buffer’s RDMA-registered memory region. For each subscription,
the rOut object maintains the remote buffer’s metadata, along with
a queue data structure that tracks data pending delivery to that
buffer. This allows the application to continue producing data into
that buffer while previously-produced data is being transferred.

An application that is transmitting, adds data to an output buffer
in two steps. First, the rOut::get_output_segment method is
called. This requests an available memory segment from the speci-
fied output buffer. The application provides the buffer identifier and
a size as arguments and this call returns a buf_seg structure which
represents the next available (free) memory segment into which the
application can place output data. If the call succeeds, the total size
of the returned segment equals the requested amount and the ap-
plication then assumes ownership of and control over the segment.
When appropriate, the application informs the framework that the
segments are ready-for-delivery by calling rOut::deliver, provid-
ing the buf_seg and a size as arguments. The size argument spec-
ifies the amount of data to be transferred, which may be less than
or equal to the amount requested in rOut::get_output_segment.
Upon calling rOut::deliver, the framework places the reference
to the segment in the appropriate subscription queues and notifies
the framework worker threads that there is data to transfer. The

124

RocketBufs: A Framework for Building Efficient, In-Memory, Message-Oriented Middleware DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

worker threads then transfer the data. This workflow is depicted in
Figure 4.

						rOut framework	threads

ID

Segments

Subscription	queue	1

iovec iovec iovec

Subscription	queue	2

iovec iovec iovec

rIn

ID

output	buffer

input	buffer

rIn

ID input	buffer

segment references

segment references

Figure 4: rOut buffer management and data transfers.

Once the segment has reached all subscribers, the framework
notes that the corresponding buffer segment is free and will reuse
the space to produce more data. The rOut::deliver method is
asynchronous and may return before the segment is delivered to all
subscribers. If an application needs to be notified upon completion
of a transfer operation (e.g., for monitoring delivery), it can register
a callback function using rOut::set_data_out_cb. RocketBufs
does not provide any batching mechanisms by default. However,
applications can easily implement batching by requesting large
memory segments that can hold multiple messages and delaying the
call to rOut::deliver until the point at which enough messages
have been placed in the segment.

Applications using an rIn object can use rIn::set_data_in_cb
to register a callback function that executes when new data arrives.
When new data arrives, the framework executes this callback with
two arguments: the identifier of the buffer to which new data is
delivered, and a reference (buf_seg) to the data itself. The rIn class
also provides an rIn::get_buf_ref which returns a reference to
all the received data of a buffer. This allows the application to access
the data in the input buffer without copying.

3.3 Buffer Flow Control
An important consideration for RocketBufs is how to make buffer
space available for use and re-use for disseminated data. Typically
in MOM systems, messages are delivered to subscribers using a
FIFO message queue, and subscribers consume messages in the
order they are sent. Therefore with RocketBufs, we allow the sub-
scriber application to signal to the framework that it can reclaim
the oldest segment of a specific buffer when it has consumed the
data and no longer need that segment. The rIn class provides the
rIn::data_consumedmethod (line 11 of Listing 2) for this purpose.
When this method is called, RocketBufs implicitly synchronizes
the buffer state (the free and busy portion) between the rIn and
rOut objects. In the future, we plan to expand this functionality to
allow applications to selectively discard messages (by specifying
the buf_seg), signaling that that buffer space can be reused while
keeping older messages for application access.

In real deployments, subscribers might process messages at a
slower rate than they are produced, resulting in a large amount of
data being queued at the message brokers. This scenario is com-
monly referred to as the creation of back-pressure. There are dif-
ferent ways that MOM systems handle back-pressure. RabbitMQ,
for example, implements a credit-based flow control mechanism
that slows down the rate of data production [55]. Redis, on the

other hand, does not have such a mechanism and simply closes the
connection to a slow subscriber if it cannot keep up [58]. Redis’
approach avoids the overhead (e.g., message exchanges) required
for flow control, making it more efficient when there is no back-
pressure (as will be demonstrated in Section 4.2). However, it also
results in possible data losses when back-pressure occurs.

With RocketBufs, the circular buffer design allows credit-based
flow control to be naturally implemented at the buffer level. When
a remote buffer does not have enough free space, the rOut ob-
ject pauses the transfer of data to that buffer. If the discrepancy
between the rate of data production and consumption continues,
eventually, the output buffer will become too busy and a call to
rOut::get_output_segmentwill fail (vec_count is set to -1 in the
returned value). In this case, the application using the rOut object is
expected to suspend the production of data and retry later. Alterna-
tively, applications can explicitly set the blocking flag when calling
rOut::get_output_segment. This blocks the calling thread until
the requested amount of memory is available.

RocketBufs offers the option of disabling flow control on a per-
buffer basis. When flow control is disabled, the framework does not
block data transfers and overwrites old segments in the circular
buffer. While this option is not suitable for many MOM systems,
it is useful for certain applications where data is usually produced
and consumed at the same rate (e.g., live video streaming).

3.4 Buffer Splicing
RocketBufs’ rIn and rOut classes allow for the construction of
flexible MOM topologies. With RocketBufs, a message broker uses
the rIn class to ingest data, either from publishers or other message
brokers, and transfers ingested data to other nodes (which could
be subscribers or other message brokers) using the rOut class. One
way to implement a message broker is to copy ingest data from
the rIn instance’s buffers to the rOut instance’s buffers and then
signal the framework to transfer that data. However, this approach
incurs overhead while copying data from input to output buffers.

To avoid this copying overhead, RocketBufs supports buffer splic-
ing using the rOut::splice method. This method takes a buffer
identifier and a reference to an rIn instance as arguments. When
rOut::splice is used, the rIn instance shares the input buffer
memory with the rOut instance. When data is received, the corre-
sponding buffer segment is automatically added to the appropriate
subscription queuemanaged by the rOut instance, allowing the data
to be disseminated without additional copying. The rOut::splice
method is useful when no modification of ingest data is required.
This is especially efficient when both ingestion and dissemination
can be done within a data center using RDMA.

3.5 The RocketNet Networking Layer
A key to RocketBufs’ design is that it encapsulates the network-
ing layer code (RocketNet) to easily support the addition of new
methods and/or APIs for transmitting and receiving buffer data.
RocketBufs uses dedicated worker threads to carry out networking
operations and execute application callbacks. In this section, we
describe how these threads perform TCP and RDMA-based net-
working, however RocketBufs’ abstractions also provide for the
future addition other types of transport protocols.

125

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

The TCP implementation uses an event-driven model. Worker
threads manage non-blocking I/O on TCP connections to remote
nodes and react to I/O events using epoll. In the current prototype,
application data is sent from rOut to rIn objects following 64 bits
of metadata: 32 bits for the buffer identifier and 32 bits for the
data size. This implies that a single transfer operation is limited to
4GB in size, however this is larger than the typical upper limit for
RDMA operations [44] and is in line with many commonmessaging
protocols [6, 12, 54].

RocketNet provides RDMA support to achieve better perfor-
mance when RNICs are available. Our RDMA implementation uses
Reliable Connections (RC) for communication, a choice strongly
advocated for in recent research [48]. The framework’s worker
threads are used for posting work requests to RDMA queues and
handling completion events. RocketNet maintains a completion
queue for each RNIC and uses a thread to monitor each queue.
When a completion event occurs, the blocked monitoring thread
is unblocked which then passes the event to one of the worker
threads, which in turn handles that event and executes any neces-
sary callbacks. RDMA data transfers are performed using zero-copy
write-with-immediate verbs directly from rOut output buffers
into rIn input buffers, bypassing both nodes’ operating systems
and CPUs. An rOut object uses the metadata of the remote buffer
to calculate the remote addresses for these operations. The frame-
work stores the buffer identifier in the verbs’ immediate data field.
This is used to trigger completion events on the receiving end, as
RDMA verbs are otherwise invisible to the CPU. To receive data,
an rIn object posts work requests to the receive queue and waits
on the completion queue for incoming data notifications. For small
messages, RocketNet uses RDMA inlining to reduce latency [35, 43].

Now that we have implemented asynchronous communication
using two drastically different transport protocols we do not ex-
pect it to be difficult to support other data center communication
technologies (e.g., DPDK or TCPDirect). The underlying APIs have
been defined and the necessary infrastructure is in place.

3.6 Configuration and Optimizations
We now discuss some configuration parameters that impact Rock-
etBufs’ messaging performance. These parameters are exposed by
RocketBufs in several forms: as arguments when creating rIn and
rOut objects, as part of a configuration file, or as arguments to
various RocketBufs methods.

Buffer sizes control how much data can be placed in buffers
for dissemination and consumption. The size of a buffer is set
when it is created (either by using the rOut::create_buffer or
the rIn::subscribe method). Typically, a larger buffer allows for
more messages to be queued and delivered without blocking the
application (while waiting for buffer space to be freed), resulting
in higher message throughput. However, this comes at the cost of
higher memory consumption. Therefore, buffer sizes should be care-
fully configured on systems with memory constraints. Additionally,
for applications where subscribers require disseminated data to be
maintained for a period of time (e.g., a streaming video application
which needs to maintain video data for serving viewers), the buffer
size should be set large enough to hold this data while allowing
new data to arrive.

A key challenge when optimizing RocketBufs’ performance is
to fully utilize the CPUs of multi-core systems. Applications using
TCP can set the tcp_num_threads parameter to control the num-
ber of threads that handle TCP sockets. Setting this to the number
of CPU cores in the system allows CPU resources to be fully utilized.
Additionally, the tcp_thread_pinning option signals the frame-
work to set the affinity of each TCP worker thread to a specific
CPU core. This ensures that these threads are load-balanced across
CPU cores, as otherwise the Linux kernel tends to schedule more
than one active thread on the same core [42].

When RDMA is used, RocketBufs maintains multiple threads
to monitor the RDMA completion queues (one per RNIC). How-
ever, if those same threads were used to handle completion events,
they could become a bottleneck when handling a high rate of mes-
sages (and therefore a high rate of completion events). As a re-
sult, in our implementation, the monitoring threads distribute the
completion events among a configurable number of framework-
managed worker threads, which then handle these events. The
rdma_num_threads parameter controls the number of RDMA
worker threads created by the framework per RNIC. This parameter
should be tuned based on the number of RNICs and CPU cores be-
ing used on the host. For example, on a system with two RNICs and
eight CPU cores, setting rdma_num_threads to four would allow all
CPU cores to be utilized for event handling. When this parameter
is set to zero, no worker thread is created and RDMA completion
events are handled by the monitoring threads.

3.7 Fault Tolerance Semantics
Existing message oriented middleware systems provide a range of
fault tolerance semantics. Some do not tolerate node failures [49],
others use replication to tolerate a broker failure [54], while oth-
ers copy messages to disk and can therefore tolerate broker and
complete cluster failures [39]. Because fault tolerance techniques
present a tradeoff between reliability and performance, some mod-
ern systems, such as ActiveMQ [9], even offer a range of config-
urable fault tolerance options. In order to support applications that
may have a wide range of requirements for fault tolerance seman-
tics, RocketBufs does not impose any fault tolerance protocols or
semantics upon applications. While RocketBufs uses reliable mes-
sage transport services (e.g., TCP and RDMA reliable connections)
to transfer data, application-level code would be required to detect
issues like node failures and/or network partitions. This allows
applications to react to failures according to its desired semantics
which may potentially vary with the cause of the failure.

4 RBMQ PUBLISH/SUBSCRIBE APPLICATION
To demonstrate RocketBufs’ utility and measure its messaging per-
formance, we use it to build an in-memory, topic-based publish/sub-
scribe system which we call RBMQ (RocketBufs Message Queue).

4.1 RBMQ Design and Implementation
The components of RBMQ (i.e., the publishers, broker, and sub-
scribers) are implemented following the design depicted in Figure 2.
The publishers use the rOut class to send messages belonging to
specified topics to the broker. The subscribers use the rIn class to
subscribe to and receive messages from specific topics. Each topic

126

RocketBufs: A Framework for Building Efficient, In-Memory, Message-Oriented Middleware DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

is mapped to a separate buffer. In our prototype, the topic-to-buffer
mapping is implemented using a hash table, although in a produc-
tion setting, this mapping could be coordinated using a distributed
key-value store, or other equivalent control schemes.

To send messages belonging to a topic, a publisher must first
initialize the topic by sending a control message to the broker. This
message contains the topic name and the corresponding buffer
identifier. Upon this notification, the broker calls rIn::subscribe
to ingest data from the buffer. The publisher then can sendmessages
by following the data production steps outlined in Section 3.2. Note
that, data placement into the output buffer can be done in any
manner preferred by the publisher application, such as copying
from other memory locations or reading the data from a device.

The RBMQ message broker is responsible for routing messages
from publishers to subscribers. It also acts as the main contact
point for the system, which listens to incoming connections from
publishers and subscribers. For each publisher, the broker creates
an rIn instance to ingest messages from that publisher. A single
rOut instance is used to disseminate messages to the subscribers.
Because ingested messages do not need to be modified, the RBMQ
broker uses buffer splicing to efficiently forward messages from
publishers to subscribers.

An RBMQ subscriber receives messages by connecting to the
broker and subscribing to the corresponding buffers of certain topics
using the rIn class. Inside the callback function registered using
rIn::set_data_in_cb, the subscriber processes the messages in
the FIFO message queue and informs the framework of the amount
of data consumed. In our current prototype, for evaluation purpose,
the subscriber does not perform any processing and simply notifies
the framework that the message is consumed.

To illustrate the ease with which RocketBufs can be used to con-
struct a broker, Listing 3 shows the pseudocode for key components
of an RBMQ broker. A Listener instance is maintained to listen for
and manage connection requests from publishers and subscribers.
When connection requests arrive (line 14), the broker uses them to
initialize the appropriate rIn/rOut objects. If a connection request
arrives from a publisher (line 15), the broker creates an rIn instance
and sets up callback functions to handle application data and con-
trol messages. Note that the on_ctrl_msg function is bound to the
rIn instance (line 18), so that the broker can identify the source of
the control messages when they arrive. If the connection request
comes from a subscriber, it is added to the rOut instance so that
the subscriber can receive published messages (line 24).

When a broker receives a topic-creation control message from
a publisher (line 29), it calls rIn::subscribe to receive messages
from the corresponding buffer. The rOut::splice method is also
called to forward the messages from that buffer to the subscribers.
Additionally, when a message arrives, the broker verifies that
it has the correct buffer-to-topic mapping. This is done in the
publisher_data_cb function, which is registered as the rIn’s call-
back function.

Listing 3 shows that the RocketBufs’ code to implement a broker
is relatively small and straightforward, especially compared to code
that would use TCP and/or RDMA directly. The code for producers
and consumers is even more concise and we believe RocketBufs
provides an easy to use foundation for implementing MOM systems.

Listing 3: Pseudocode for key RBMQ broker components.
1// Listen for connections (from publishers and subscribers)
2Listener listener(broker_address, protocol);
3listener.set_conn_cb(on_conn);
4rOut out; // Dissemination object
5
6// Callback for data ingest (from publisher)
7void publisher_data_cb(bid_t bid, buf_seg data) {
8if (!verify_topic_mapping(bid, data))
9throw exception("InvalidMapping");
10// Splice prevents the need for other logic here
11}
12
13// Callback for handling new connections
14void on_conn(Conn &conn) {
15if (from_publisher(conn)) {
16rIn ∗in = new rIn(conn);
17// Set callback to handle control messages
18in.set_control_msg_cb(std::bind(on_ctrl_msg, in));
19// Set callback to handle application data
20in.set_data_arrived_cb(publisher_data_cb);
21}
22// Add subscriber connections
23if (from_subscriber(conn))
24out.add_conn(conn);
25}
26
27// Callback for handling control messages
28void on_ctrl_msg(rIn ∗in, iovec msg) {
29if (is_topic_creation(msg)) {
30bid_t bid = bid_from_msg(msg);
31in.subscribe(bid, buffer_size); // Subscribe to publisher
32out.splice(∗in, bid); // Deliver data to subscribers
33}
34}

4.2 RBMQ Evaluation Methodology
In our experiments, we use one host to run the message broker
processes, and separate hosts to run the publisher and subscriber
processes. Each subscriber subscribes to all topics and the message
brokers disseminate messages to all subscribers. For RBMQ, buffer
sizes and threading parameters are tuned for individual experiments.
Generally, the buffer size is set to be at least 10 times as large as
the size of a message (including message headers), which allows
for continuous message production. We also set the TCP_NODELAY
option for TCP sockets, where they are used (i.e., for RabbitMQ,
Redis and the RBMQ configurations that use TCP). We measure the
performance of different RBMQ transport protocol configurations:
publisher-to-broker and broker-to-subscriber over TCP (denoted
as RBMQ-tcp-tcp); publisher-to-broker over TCP and broker-to-
subscriber over RDMA (RBMQ-tcp-rdma); and publisher-to-broker
and broker-to-subscriber over RDMA (RBMQ-rdma-rdma).

For RabbitMQ, we use the rabbitmq-c client library [8] to im-
plement the publishers and subscribers. Our Redis publishers and
subscribers are implemented using the Redis-provided client library
hiredis [56]. We run multiple Redis broker processes on the broker
host in order to utilize all CPU cores, since each Redis broker pro-
cess is single-threaded. For both Redis and RabbitMQ, we disable
data persistence and event logging features to ensure that messages

127

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

are handled in-memory only. We also tune both systems based on
recommended best practices [53, 59] to optimize their messaging
performance in our experiments.

Themessage broker processes run on a host containing a 2.6GHz
Intel Xeon E5-2660v3 CPU with 10 cores, 512GB of RAM, and four
40Gbps NICs for a total of 160Gbps bidirectional bandwidth (we
refer to this hardware as a “big host”). Subscribers and publishers
run on separate hosts which contain a single 2.0GHz Intel Xeon D-
1540 CPU with eight cores, 64GB of RAM, and a single 40GbpsNIC
(we refer to this hardware as a “regular host”). We benchmarked
our NICs using iPerf [30] and found that the maximum throughput
they can achieve is 38Gbps. All nodes run Ubuntu 18.04.2 with
a version 4.18.0 Linux kernel. To avoid network contention, each
subscriber connects to a separate NIC on the host running the
broker. Each experiment is run for 150 seconds, with data being
collected during the 120 second steady-state period following a 30
second warmup period. The experimental results are reported with
95% confidence intervals, except for the latency experiments where
the data points are reported as CDFs. Note that, the confidence
intervals are typically small relative to the sizes of the data points,
and therefore in most cases they are not visible on the graphs.

4.3 RBMQ Message Throughput
In this experiment, we measure the maximum message throughput
that can be achieved by amessage broker in terms of number of mes-
sages delivered per second (mps). To find the maximum throughput
values, we configure the publishers to constantly send messages
and increase the number of publishers until the throughput no
longer increases. This corresponds to the point where, depending
on the experiment, either the broker host’s CPU utilization is nearly
100% or the NIC is saturated.

We run a series of experiments and record the results for varying
message sizes and study the scalability of RocketBufs and RBMQ
the number of subscribers. Figures 5a, 5c, and 5e show the broker
message throughput (in mps) when disseminating to zero, two and
four subscribers, and Figures 5b, 5d, and 5f show the application-
level goodput (in Gbps) for the same experiments.

In the zero-subscriber benchmarks (Figure 5a and 5b), messages
published to the broker are not forwarded to any subscriber and
are discarded immediately. These benchmarks allow us to obtain
insights about the ingest capacity of the broker and the cost of dis-
seminating data to subscribers. In these results, among TCP-based
systems, Redis performs better than RBMQ-tcp and RabbitMQ (in-
gest throughput is up to 23% and 36% higher, respectively). This
can be explained by the fact that Redis does not implement a flow
control scheme (as discussed in Section 3.3), allowing it to avoid
flow control overhead. RBMQ-rdma-rdma achieves the highest in-
gest throughput, which is up to 1.7 times higher than Redis, due to
the CPU-efficiency of RDMA. Additionally, the ingest throughput
for RBMQ-rdma-rdma remains relatively consistent for all mes-
sage sizes before the bandwidth-saturation point (up to 2 KB). The
throughput when ingesting 2 KB messages is only 5% lower than
when ingesting 8-byte messages. In contrast, before saturating the
NIC bandwidth, the ingest throughput drops 27% for Redis, 27% for
RBMQ-tcp and 76% for RabbitMQ.

System Rabbit- Redis RBMQ- RBMQ- RBMQ- RBMQ-
MQ tcp rdma no-fc rdma-

rdma
utilization 94.0 55.3 63.0 52.3 29.2 9.6
vmlinux 23.6 74.2 85.2 84.9 78.2 73.7
mlx4 2.1 10.6 7.4 4.8 5.4 4.9
libpthread 0.7 1.0 2.9 4.3 6.7 9.9
application 71.5 8.7 3.3 4.0 6.2 6.5
others 2.2 5.5 1.3 2.1 3.4 5.0

Table 1: CPU utilization statistics from RBMQ broker. Load
is 50,000 mps with 8 KB messages and four subscribers.

When subscribers are present, we make several observations
from the experimental results. First, among TCP-based systems,
Redis and RBMQ perform significantly better than RabbitMQ. In the
one-subscriber case, RabbitMQ is the only system that is not able
to saturate the NICs’ bandwidth (due to CPU saturation). When dis-
seminatingmessages to four subscribers, themessage throughput of
RBMQ-tcp and Redis is up to 1.9 times and 2.2 times higher than Rab-
bitMQ, respectively. Secondly, Redis performs slightly better than
RBMQ-tcp. In the four-subscriber case, Redis’ throughput is up to
18% higher than RBMQ-tcp. Finally, leveraging RDMA with RBMQ
yields substantial throughput improvements. Even when RDMA
is only used for broker-to-subscriber communication (RBMQ-tcp-
rdma), throughput with four subscribers is up to 1.3 times higher
than Redis. When RDMA is used for all communication (RBMQ-
rdma-rdma), message throughput with four subscribers is up to
2.0 times higher than RBMQ-tcp and 1.7 times higher than Redis.
Additionally, RBMQ-rdma-rdma’s throughput with four subscribers
is higher than Redis’ throughput with two subscribers, and RBMQ-
rdma-rdma is also the only system that is able to fully saturate all
40Gbps NICs.

We perform CPU profiling on the broker host using perf [41]
to understand the differences in performance among the systems
evaluated. Table 1 shows the analyzed profiling data, where each
pub/sub system is subjected to a load of 50,000 messages per second
with 8 KB messages and four subscribers. The “utilization” row
shows the average system-wide CPU utilization of each system. The
subsequent rows show the percentages of CPU time each system
spends in various parts of the system, including the Linux kernel
(vmlinux), the NIC driver (mlx4), the threading library (libpthread),
the user-level application functions (application), and others.

The profiling statistics clearly shows that systems requiring less
CPU for the target load (50,000 mps) are able to obtain higher peak
loads. For example, RBMQ-rdma-rdma requires the least amount of
CPU (9.6%) while handling this load, due to the CPU-efficiency of
RDMA, and as a result it achieves the highest maximum throughput
with higher loads. RabbitMQ spends much more CPU time execut-
ing application-level code (71.5%) compared to Redis and RBMQ,
which in all cases is less than 10%. This high application-level over-
head reduces the CPU time available for transferring data, and is
likely due to the overhead from the Erlang implementation (e.g.,
from just-in-time compilation and scheduling). In contrast, RBMQ
and Redis spend the majority of their CPU time (more than 70%)
in the Linux kernel, indicating that a larger portion of CPU time
is used to transfer data, allowing these systems to scale to provide
higher message throughput.

128

RocketBufs: A Framework for Building Efficient, In-Memory, Message-Oriented Middleware DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(a) RBMQ throughput with 0 subscribers

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(b) RBMQ goodput with 0 subscribers

 0

 100

 200

 300

 400

 500

 600

 700

 800

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(c) RBMQ throughput with 2 subscribers

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K
G

oo
dp

ut
 (

G
bp

s)
Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(d) RBMQ goodput with 2 subscribers

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 32 128 512 2K 8K 32K 128K 512K

T
pu

t (
m

sg
s/

s
x

10
3)

Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(e) RBMQ throughput with 4 subscribers

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 32 128 512 2K 8K 32K 128K 512K

G
oo

dp
ut

 (
G

bp
s)

Message size (bytes)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-tcp-no-fc
RBMQ-tcp-rdma

RBMQ-rdma-rdma

(f) RBMQ goodput with 4 subscribers

Figure 5: RBMQ message throughput (messages per second) and goodput (Gbps)

To explain RBMQ-tcp’s higher CPU utilization compared to Re-
dis’ (63.0% versus 55.3%), we perform further profiling and find that
about 10% of RBMQ-tcp’s CPU time is spent on buffer synchro-
nization and flow control. This overhead does not exist for Redis,
since it does not implement a flow control scheme (which comes
at the cost of lacking a mechanism to deal with back-pressure).
When flow control is disabled, RBMQ-no-fc produces similar to
significantly higher message throughput than Redis (Figures 5a,
5c, 5e). In Section 5, we show how our live streaming application
uses RocketBufs’ flexibility regarding flow control to reduce CPU
utilization.

4.4 RBMQ Subscriber CPU Utilization
In most MOM deployments, subscribers are responsible for receiv-
ing and processing data, and in many cases data processing tasks
are CPU-intensive [5, 7, 60]. Therefore, reducing the CPU overhead
associated with receiving and managing data is critical as it allows
the subscriber application to spend more CPU time processing data.
To examine the reductions in subscriber CPU overhead provided
by RocketBufs we now run a series of benchmarks where we mea-
sure and profile the CPU utilization on a subscriber host receiving

large volumes of data. In these benchmarks, we use 10 publish-
ers to send messages to the broker host, each sends messages at a
rate of 5,000 mps for a total of 50,000 mps. We compare the Redis
and RabbitMQ subscribers with three different configurations for
the RBMQ subscriber: using rIn with TCP (RBMQ-tcp); using rIn
with RDMA (RBMQ-rdma); and using rIn with TCP but with flow
control disabled (RBMQ-tcp-no-fc).

 0

 5

 10

 15

 20

 25

 30

4K 8K 16K 32K

1.6 3.3 6.5 13.1

C
PU

 u
til

iz
at

io
n

(%
)

Message size (bytes)

Data throughput (Gbps)

RabbitMQ
Redis
RBMQ-tcp
RBMQ-tcp-no-fc
RBMQ-rdma

Figure 6: RBMQ subscriber CPU utilization (50,000 mps)

Figure 6 shows the average subscriber CPU utilization with 95%
confidence intervals, obtained from vmstat samples collected every

129

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

second. For TCP-based subscribers, the CPU is busy monitoring
sockets and copying bytes from socket buffers to user-space. There-
fore, the CPU utilization of these systems increases noticeably with
larger messages. Overall, the Redis subscriber has the highest CPU
utilization. Examining the source code of the hiredis client library
reveals that it internally copies message data from an internal input
buffer to another buffer before passing that buffer to the applica-
tion, which explains Redis’ higher CPU utilization compared to
RabbitMQ and RBMQ-tcp. For RBMQ, a noticeable amount of CPU
is spent on synchronizing buffers’ state in RBMQwhen flow control
is enabled. When flow control is disabled, RBMQ’s CPU utilization
is further reduced (RBMQ-no-fc). Finally, the RBMQ subscriber us-
ing RDMA uses very little CPU resources regardless of the message
size. This is because for RBMQ-rdma, the CPU is not used for data
transfers and mainly used to handle RDMA completion events.

4.5 RBMQ Delivery Latencies
We also conduct experiments to measure delivery latency (how long
it takes for messages to travel from publishers to subscribers). To
avoid comparing timestamps generated on different machines, we
measure and report the round-trip latencies of messages between
two hosts communicating via a message broker (a similar approach
to existing work [34]). The average latency of a MOM system might
vary depending on the system’s load, therefore, we compare the
messaging latencies of the systems while handling 100,000 mps
and 200,000 mps. We use a message size of 34 bytes (excluding the
message header), which equals the average size of a Tweet [51].

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-rdma-rdma

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Roundtrip latency (microseconds)

RabbitMQ
Redis

RBMQ-tcp-tcp
RBMQ-rdma-rdma

Figure 7: Round-trip latency: 100,000 mps (top) and 200,000
mps (bottom)

The CDFs of the round-trip latencies are shown in the two graphs
in Figure 7. The x-axis represents log-scaled round-trip latency
in microseconds. There are three important takeaways from the
latency results. First, Redis and RBMQ are able to achieve lower la-
tency than RabbitMQ. Secondly, RBMQ-rdma-rdma achieves signif-
icantly lower latency compared to TCP-based systems, since RDMA
can avoid kernel overhead on data transfers. The median round-trip
latency for RBMQ-rdma-rdma at 100,000 mps is 79 microseconds,
which is 47% faster than Redis and 81% faster than RabbitMQ. At

200,000 mps, the median round-trip latency for RBMQ-rdma-rdma
at 200,000 mps is 159 microseconds, 30% faster than Redis and 70%
faster than RabbitMQ. Finally, we observe high tail latencies in all
measured systems due to the queuing of messages. For example,
RBMQ-rdma-rdma yields a maximum round-trip latency of 4,640
microseconds for the 200,000 mps workload, despite having low
overall latencies (the 90th percentile latency is 299 microseconds).

5 LIVE STREAMING VIDEO APPLICATION
To further demonstrate the utility of the RocketBufs framework,
we present an application designed to manage the dissemination
and delivery of live streaming video. Live streaming services like
Twitch handle large amounts of video traffic and replicate them to
many video servers within and across data centers in order to meet
global demands [17]. We demonstrate how live video replication
within a data center can be easily implemented using RocketBufs.

The design of the system is depicted in Figure 8. Emulated pro-
ducers each generate a unique source of streaming video data. They
send data in chunks (500 KB in our prototype) to a dissemination
host over TLS-encrypted TCP connections (which emulates real
services [75][16]). The dissemination host acts as a broker, which in-
gests video from stream sources and uses the rOut class to replicate
this data to multiple web servers on separate hosts. When a video
chunk arrives on the OpenSSL connection, the dissemination pro-
cess requests an output buffer segment, places that chunk into the
segment and signals the rOut instance to disseminate that chunk.
The web server processes act as subscribers, which use the rIn
class to subscribe to and receive all video streams. They also run
a modified version of the userver, an open-source web server that
has been shown to provide good performance [13, 50], to deliver
video data to requesting viewers. Finally, viewers request desired
video streams from the delivery servers, at the same rate that the
streams are produced (2 Mbps in our prototype). These viewers are
emulated using httperf [47], which makes requests to the userver
over TLS-encrypted HTTP (HTTPS).

Figure 8: Using RocketBufs for live streaming video.

In our application, one buffer is used to disseminate each video
stream, and is sized to hold five video chunks. Data is not retained
in the delivery server’s input buffer for long as it would become
too stale to deliver to viewers. Therefore, we disable flow control
and allow the framework to overwrite the oldest segment in the
circular buffer when new data arrives. As shown in Section 4.4, this
design avoids overhead due to buffer synchronization, however
it makes it possible for data to be overwritten asynchronously
while being delivered to viewers. To address this issue, we wrap
the video chunks with consistency markers, which are checked by
the server to see if data has been modified before or during the
course of sending it to viewers. This may happen if the system is

130

RocketBufs: A Framework for Building Efficient, In-Memory, Message-Oriented Middleware DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

overloaded and the web server is unable to properly satisfy viewer
requests. We consider such scenarios an error and terminate the
viewing session. A real-world deployment would implement a load
balancing mechanism to offload viewers to a less-loaded server.

We run a series of experiments to measure a delivery host’s
capacity to deliver live streaming video. These experiments are
conducted for both TCP-based and RDMA-based dissemination
with RocketBufs (denoted as RB-tcp and RB-rdma). The dissemina-
tion process resides on a big host (described in Section 4.2), and
the web server-integrated subscribers reside on slim hosts. We use
tc [2] to add bandwidth limits and network delays to simulate WAN
effects for connections between viewers and delivery servers. We
also modify httperf to include checks for data timeliness (timeouts)
and validity. For comparison, we implement a version of our live
streaming application using Redis [57] for video dissemination. We
use Redis because it has previously been used for live video stream-
ing [60] and it significantly outperforms RabbitMQ. In this case,
RocketBufs does not use flow control (Redis does not support it)
because ideally video is produced and consumed at the same rate.

We examine the performance of both systems as the load in-
creases (by increasing the number of producers). For each experi-
ment, we increase the number of emulated viewers until the deliv-
ery server’s capacity is exceeded. This corresponds to the point at
which the CPUs are saturated, video is not delivered to viewers in a
timely manner and client requests time outWe record the maximum
number of viewers that can be supported which is reported using
the total amount of viewer throughput. Benchmarks are repeated
five times and we graph their means and 95% confidence intervals.

Figure 9 shows the results of these benchmarks (the 95% confi-
dences intervals are not visible). As previously discussed RocketBufs
incurs less CPU overhead than Redis when receiving data on a sub-
scriber node. This difference grows as the amount of disseminated
data (number of video streams) increases. For 20 Gbps of incoming
data, while the Redis-based web server is only able to serve 13.5
Gbps of video to viewers, RB-tcp achieves over 17 Gbps, a relative
increase of 27%. When RDMA is used (RB-rdma), the CPU overhead
associated with receiving data is negligible, regardless of the dis-
semination throughput. As a result, RB-rdma’s viewer throughput
remains relatively consistent as the number of incoming streams
increases and only drops from 21.7 Gbps (with 1,000 streams gener-
ating 2 Gbps of incoming data) to 21.0 Gbps (with 10,000 streams
generating 20 Gbps of incoming data), an improvement of up to 55%
versus Redis. Profiling the delivery servers reveals that Redis uses
high amounts of CPU for memcpy. The design of RocketBufs, which
is explicitly intended to work with data in-place, helps eliminate
much of this overhead.

 0

 5

 10

 15

 20

 25

 2 4 8 12 16 20

1,000 2,000 4,000 6,000 8,000 10,000

To
ta

l V
ie

w
er

 T
pu

t (
G

bp
s)

Incoming Stream Throughput (Gbps)

Streams

RB-tcp
RB-rdma

Redis

Figure 9: Max. error-free web server delivery throughput.

6 CONCLUSIONS
In this paper we present RocketBufs, a framework that facilitates
the construction of high-performance MOM systems. RocketBufs
provides abstractions and APIs for data dissemination between
nodes that are easy to use and support different transport protocols.
Because RocketBufs’ APIs are agnostic to the underlying transport
layer, developers can configure the framework to use different
protocols or technologies without changing application code. This
allows applications to reap the benefits of new technologies as
support is added to RocketBufs.

Our evaluation of a publish/subscribe system (RBMQ) built using
RocketBufs shows significant performance gains when compared to
two widely-used industry gradeMOM systems.When configured to
use TCP, RBMQ achieves up to 1.9 times higher messaging through-
put than RabbitMQ. RBMQ throughput is similar to that of Redis
when configured comparably, however, RBMQ subscribers require
significantly fewer CPU resources than Redis. When using RDMA,
RBMQ throughput is up to 3.7 times higher than RabbitMQ and
1.7 times higher than Redis, while also reducing median delivery
latency. In addition, on RBMQ subscriber hosts configured to use
RDMA, data transfers occur with negligible CPU overhead. This
allows CPU resources to be used for other purposes like application
logic and data processing. Finally, we demonstrate the flexibility
of our framework, by implementing a system to disseminate and
deliver live-streaming video. We compare performance when using
RocketBufs and Redis to disseminate video data and find that Rock-
etBufs supports up to 27% and 55% higher simultaneous viewer
throughput than Redis when using TCP and RDMA, respectively.

7 ACKNOWLEDGMENTS
We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC); a David R. Cheriton
Faculty Fellowship; a University of Waterloo President’s Scholar-
ship; and David R. Cheriton and Ontario Graduate Scholarships. We
thank Zuhair AlSader for fruitful discussions and his feedback, and
that of the anonymous reviewers, on earlier drafts of this paper.

REFERENCES
[1] Marcos K. Aguilera et al. 2018. Remote regions: A simple abstraction for remote

memory. In Proc. USENIX Annual Technical Conference (ATC). 775–787.
[2] W. Almesberger. 1999. Linux network traffic control – implementation overview.
[3] Amazon. [n.d.]. Amazon Kinesis Data Firehose. https://aws.amazon.com/kinesis/

data-firehose/. Accessed October 8, 2019.
[4] Amazon. [n.d.]. Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/

data-streams/. Accessed August 29, 2019.
[5] Amazon. [n.d.]. Amazon Serverless Data Processing. https://aws.amazon.com/

lambda/data-processing/. Accessed June 23, 2019.
[6] AMQP. [n.d.]. OASIS AMQP 1.0 Specification. http://www.amqp.org/

specification/1.0/amqp-org-download/. Accessed June 24, 2019.
[7] E. Androulaki et al. 2018. Hyperledger Fabric: A Distributed Operating System

for Permissioned Blockchains. In EuroSys. Article 30, 15 pages.
[8] Alan Antonuk. [n.d.]. rabbitmq-c client library. https://github.com/alanxz/

rabbitmq-c/. Accessed June 24, 2019.
[9] Apache. [n.d.]. ActiveMQ Artemis. https://activemq.apache.org/components/

artemis/. Accessed October 8, 2019.
[10] Apache. [n.d.]. Apache OpenWhisk: Open Source Serverless Cloud Platform.

https://openwhisk.apache.org/. Accessed June 23, 2019.
[11] Apache. [n.d.]. Pulsar: distributed pub-sub messaging system. https://pulsar.

apache.org/. Accessed June 23, 2019.
[12] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext Transfer

Protocol Version 2 (HTTP/2). RFC 7540. https://doi.org/10.17487/RFC7540
[13] Tim Brecht, David Pariag, and Louay Gammo. 2004. accept()able strategies for

improving web server performance. In USENIX ATC. 227–240.

131

https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/lambda/data-processing/
https://aws.amazon.com/lambda/data-processing/
http://www.amqp.org/specification/1.0/amqp-org-download/
http://www.amqp.org/specification/1.0/amqp-org-download/
https://github.com/alanxz/rabbitmq-c/
https://github.com/alanxz/rabbitmq-c/
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/
https://openwhisk.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://doi.org/10.17487/RFC7540

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Huy Hoang, Benjamin Cassell, Tim Brecht, Samer Al-Kiswany

[14] B. Cassell, H. Hoang, and T. Brecht. 2019. RocketStreams: A framework for the
efficient dissemination of live streaming video. In APSys. 84–90.

[15] B. Cassell, T. Szepesi, B. Wong, T. Brecht, J. Ma, and X. Liu. 2017. Nessie: A
decoupled, client-driven, key-value store using RDMA. IEEE Transactions on
Parallel and Distributed Systems 28, 12 (2017), 3537–3552.

[16] Colin Creitz. [n.d.]. Deadline Approaching: All Live Video Uploads Required
to use RTMPS. https://developers.facebook.com/blog/post/v2/2019/04/16/live-
video-uploads-rtmps/. Accessed September 11, 2019.

[17] Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig. 2017. Internet scale
user-generated live video streaming: The Twitch case. In Proc. Passive and Active
Measurement Conference (PAM). Springer, 60–71.

[18] Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. 2014. FaRM:
Fast remote memory. In NSDI. 401–414.

[19] A. Dragojevic, D. Narayanan, E.B. Nightingale, M. Renzelmann, A. Shamis, A.
Badam, and M. Castro. 2015. No compromises: Distributed transactions with
consistency, availability, and performance. In SOSP. 54–70.

[20] Eclipse. [n.d.]. Vert.x. https://vertx.io/. Accessed October 8, 2019.
[21] F-Stack. [n.d.]. F-Stack. http://www.f-stack.org/. Accessed October 18, 2019.
[22] Evan Freitas. 2017. Presenting the Twitch 2016 year in review. https://blog.twitch.

tv/presenting-the-twitch-2016-year-in-review-b2e0cdc72f18. Accessed April
12, 2019.

[23] J. Gascon-Samson, F. Garcia, B. Kemme, and J. Kienzle. 2015. Dynamoth: A
Scalable Pub/Sub Middleware for Latency-Constrained Applications in the Cloud.
In IEEE International Conference on Distributed Computing Systems. 486–496.

[24] Google. [n.d.]. Google Cloud Pub/Sub. https://cloud.google.com/pubsub/. Ac-
cessed June 23, 2019.

[25] Google. [n.d.]. Google Cloud Tasks. https://cloud.google.com/tasks/. Accessed
October 8, 2019.

[26] Paul Grun et al. 2015. A brief introduction to the OpenFabrics interfaces — a new
network API for maximizing high performance application efficiency. In Proc.
Symposium on High-Performance Interconnects (HOTI). 34–39.

[27] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. 2016. RDMA
over Commodity Ethernet at Scale. In SIGCOMM. 202–215.

[28] Hoang, Huy. 2019. Building a Framework for High-performance In-memory
Message-Oriented Middleware. Master’s thesis. University of Waterloo.

[29] IBM. [n.d.]. IBM Cloud Functions. https://www.ibm.com/cloud/functions. Ac-
cessed June 23, 2019.

[30] Iperf. [n.d.]. Iperf. https://iperf.fr/. Accessed September 11, 2019.
[31] J. Iyengar and M. Thomson. 2019. QUIC: A UDP-Based Multiplexed and Secure

Transport. In draft-ietf-quic-transport-19, Internet Engineering Task Force draft.
[32] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel, R. Van Renesse,

S. Zink, and K.P. Birman. 2019. Derecho: Fast State Machine Replication for
Cloud Services. ACM Trans. Comput. Syst. 36, 2, Article 4 (April 2019).

[33] A. Kalia, M. Kaminsky, and D.G. Andersen. 2016. FaSST: Fast, scalable and
simple distributed transactions with two-sided (RDMA) datagram RPCs. In OSDI.
185–201.

[34] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
efficiently for key-value services. In SIGCOMM. 295–306.

[35] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines
for high performance RDMA systems. In USENIX ATC. 437–450.

[36] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs
can be general and fast. In NSDI. 0–16.

[37] D. Kim et al. 2019. Freeflow: Software-based Virtual RDMA Networking for
Containerized Clouds. In NSDI. 113–125.

[38] Richard Knop. [n.d.]. Machinery. https://github.com/RichardKnop/machinery.
Accessed October 8, 2019.

[39] Joel Koshy. [n.d.]. Kafka Ecosystem at LinkedIn. https://engineering.linkedin.
com/blog/2016/04/kafka-ecosystem-at-linkedin. Accessed October 12, 2019.

[40] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang. 2017.
KV-Direct: High-performance in-memory key-value store with programmable
NIC. In SOSP. 137–152.

[41] Linux. [n.d.]. Perf. https://github.com/torvalds/linux/tree/master/tools/perf.
Accessed Sept 12, 2019.

[42] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova. 2016. The
Linux Scheduler: A Decade ofWasted Cores. In EuroSys. Article 1, 1:1–1:16 pages.

[43] P. MacArthur and R. D. Russell. 2012. A performance study to guide RDMA pro-
gramming decisions. In IEEE 14th International Conference on High Performance
Computing and Communications. 778–785.

[44] Mellanox. [n.d.]. RDMA Aware Networks Programming User Manual Rev
1.7. https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf. Accessed April 12, 2019.

[45] B.N. Memon, X.C. Lin, A. Mufti, A.S. Wesley, T. Brecht, K. Salem, B. Wong, and
B. Cassell. 2018. RaMP: A lightweight RDMA abstraction for loosely coupled
applications. In HotCloud. 1–6.

[46] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA
reads to build a fast, CPU-efficient key-value store. In USENIX ATC. 103–114.

[47] D. Mosberger and T. Jin. 1998. httperf – a tool for measuring web server perfor-
mance. ACM SIGMETRICS Performance Evaluation Review 26, 3 (1998), 31–37.

[48] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, L. Liss, M. Wei, D.
Tsafrir, and M.K. Aguilera. 2019. Storm: A fast transactional dataplane for remote
data structures. In SYSTOR. 97–108.

[49] NSQ. [n.d.]. NSQ: https://nsq.io/. Accessed Apr. 1, 2020.
[50] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, and Amol Shukla. 2007. Com-

paring the performance of web server architectures. In EuroSys. 231–243.
[51] Sarah Perez. 2018. Twitter’s doubling of character count from 140 to 280 had little

impact on length of tweets. https://techcrunch.com/2018/10/30/twitters-doubling-
of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/.
Techcrunch. Accessed June 25, 2019.

[52] Karine Pires and Gwendal Simon. 2014. DASH in Twitch: Adaptive bitrate
streaming in live game streaming platforms. In Proc. Workshop on Design, Quality
and Deployment of Adaptive Video Streaming (VideoNext). ACM, 13–18.

[53] Pivotal. [n.d.]. Networking and RabbitMQ. https://www.rabbitmq.com/
networking.html. Accessed June 6, 2019.

[54] RabbitMQ. [n.d.]. Advanced Message Queuing Protocol specification. https:
//rabbitmq.com/resources/specs/amqp0-9-1.pdf. Accessed June 25, 2019.

[55] RabbitMQ. [n.d.]. Flow Control. https://www.rabbitmq.com/flow-control.html.
Accessed August 23, 2019.

[56] Redis. [n.d.]. hiredis. https://github.com/redis/hiredis. Accessed Apr 12, 2019.
[57] Redis. [n.d.]. Redis. https://redis.io. Accessed April 12, 2019.
[58] Redis. [n.d.]. Redis client handling. https://redis.io/topics/clients. Accessed Aug

23, 2019.
[59] Redis. [n.d.]. Redis Documentation. https://redis.io/documentation. Accessed

Oct 6, 2019.
[60] L. Rodríguez-Gil, J. García-Zubia, P. Orduña, and D. López-de Ipiña. 2017. An

open and scalable web-based interactive live-streaming architecture: The WILSP
platform. IEEE Access 5 (2017), 9842–9856.

[61] S. Sanfilippo. [n.d.]. Disque. https://github.com/antirez/disque. Accessed Oct 8,
2019.

[62] V. Setty, R. Vitenberg, G. Kreitz, G. Urdaneta, and M. v. Steen. 2014. Cost-Effective
Resource Allocation for Deploying Pub/Sub on Cloud. In ICDCS. 555–566.

[63] Yogeshwer Sharma et al. 2015. Wormhole: Reliable Pub-Sub to Support Geo-
replicated Internet Services. In NSDI. 351–366.

[64] Solarflare. [n.d.]. TCPDirect Delivers Lowest Possible Latency Between the
Application and the Network. https://solarflare.com/wp-content/uploads/2019/
02/SF-117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf. Accessed
October 18, 2019.

[65] Randall Stewart, John-Mark Gurney, and Scott Long. 2015. Optimizing TLS for
high-bandwidth applications in FreeBSD. Technical Report. Netflix. 1–6 pages.

[66] Randall Stewart and Scott Long. 2016. Improving high-bandwidth TLS in the
FreeBSD kernel. Technical Report. Netflix. 1–5 pages.

[67] H. Subramoni, G. Marsh, S. Narravula, Ping Lai, and D. K. Panda. 2008. Design
and evaluation of benchmarks for financial applications using Advanced Message
Queuing Protocol (AMQP) over InfiniBand. In Workshop on High Performance
Computational Finance. 1–8.

[68] Contributed Systems. [n.d.]. Faktory. http://contribsys.com/faktory/. Accessed
October 8, 2019.

[69] The Linux Foundation projects. [n.d.]. DPDK Data Plan Development Kit. https:
//www.dpdk.org/. Accessed January 13, 2020.

[70] A. Trivedi, P. Stuedi, B. Metzler, C. Lutz, M. Schmatz, and T.R. Gross. 2015. RStore:
A direct-access DRAM-based data store. In ICDCS. 674–685.

[71] Shin-Yeh Tsai and Yiying Zhang. 2017. LITE: kernel RDMA support for data
center applications. In SOSP. 306–324.

[72] Y. Wang et al. 2015. HydraDB: a resilient RDMA-driven key-value middleware for
in-memory cluster computing. In International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–11.

[73] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled distributed transactions: Hybrid is better!. In OSDI. 233–251.

[74] B. Yi, J. Xia, L. Chen, and K. Chen. 2017. Towards Zero Copy Dataflows Using
RDMA. In SIGCOMM Posters and Demos. 28–30.

[75] Youtube. [n.d.]. YouTube’s road to HTTPS. https://youtube-eng.googleblog.com/
2016/08/youtubes-road-to-https.html. Accessed July 26, 2019.

[76] I. Zhang, J. Liu, A. Austin, M.L. Roberts, and A. Badam. 2019. I’m Not Dead Yet!:
The Role of the Operating System in a Kernel-Bypass Era. In HotOS. 73–80.

132

https://developers.facebook.com/blog/post/v2/2019/04/16/live-video-uploads-rtmps/
https://developers.facebook.com/blog/post/v2/2019/04/16/live-video-uploads-rtmps/
https://vertx.io/
http://www.f-stack.org/
https://blog.twitch.tv/presenting-the-twitch-2016-year-in-review-b2e0cdc72f18
https://blog.twitch.tv/presenting-the-twitch-2016-year-in-review-b2e0cdc72f18
https://cloud.google.com/pubsub/
https://cloud.google.com/tasks/
https://www.ibm.com/cloud/functions
https://iperf.fr/
https://github.com/RichardKnop/machinery
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://github.com/torvalds/linux/tree/master/tools/perf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.rabbitmq.com/networking.html
https://www.rabbitmq.com/networking.html
https://rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://www.rabbitmq.com/flow-control.html
https://github.com/redis/hiredis
https://redis.io
https://redis.io/topics/clients
https://redis.io/documentation
https://github.com/antirez/disque
https://solarflare.com/wp-content/uploads/2019/02/SF-117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf
https://solarflare.com/wp-content/uploads/2019/02/SF-117079-AN-Solarflare-TCPDirect-White-Paper-Issue-5.pdf
http://contribsys.com/faktory/
https://www.dpdk.org/
https://www.dpdk.org/
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html
https://youtube-eng.googleblog.com/2016/08/youtubes-road-to-https.html

	Abstract
	1 Introduction
	2 Related Work
	3 RocketBufs
	3.1 Buffers in RocketBufs
	3.2 rIn and rOut Classes
	3.3 Buffer Flow Control
	3.4 Buffer Splicing
	3.5 The RocketNet Networking Layer
	3.6 Configuration and Optimizations
	3.7 Fault Tolerance Semantics

	4 RBMQ Publish/Subscribe Application
	4.1 RBMQ Design and Implementation
	4.2 RBMQ Evaluation Methodology
	4.3 RBMQ Message Throughput
	4.4 RBMQ Subscriber CPU Utilization
	4.5 RBMQ Delivery Latencies

	5 Live Streaming Video Application
	6 Conclusions
	7 Acknowledgments
	References

