
DeepMatch: Deep Matching for In-Vehicle Presence Detection in
Transportation

Magnus Oplenskedal
Norwegian University of Science and

Technology (NTNU)
Trondheim, Norway

Forkbeard Technologies
Oslo, Norway

magnukop@ntnu.no

Amir Taherkordi
University of Oslo
Oslo, Norway

amirhost@ifi.uio.no

Peter Herrmann
Norwegian University of Science and

Technology (NTNU)
Trondheim, Norway
herrmann@ntnu.no

ABSTRACT

A key feature of modern public transportation systems is the accu-
rate detection of the mobile context of transport vehicles and their
passengers. A prominent example is automatic in-vehicle presence
detection which allows, e.g., intelligent auto-ticketing of passen-
gers. Most existing solutions, in this field, are based on either using
active RFID or Bluetooth Low Energy (BLE) technology, or mobile
sensor data analysis. Such techniques suffer from low spatiotem-
poral accuracy in in-vehicle presence detection. In this paper, we
address this issue by proposing a deep learning model and the de-
sign of an associated generic distributed framework. Our approach,
called DeepMatch, utilizes the smartphone of a passenger to ana-
lyze and match the event streams of its own sensors and the event
streams of the counterpart sensors in an in-vehicle reference unit.
This is achieved through a new learning model architecture using
Stacked Convolutional Autoencoders for feature extraction and
dimensionality reduction, as well as a dense neural network for
stream matching. In this distributed framework, feature extraction
and dimensionality reduction is offloaded to the smartphone, while
matching is performed in a server, e.g., in the Cloud. In this way,
the number of sensor events to be transmitted for matching on the
server side will be minimized. We evaluated DeepMatch based on
a large dataset taken in real vehicles. The evaluation results show
that the statistical accuracy of our approach is 0.978 for in-vehicle
presence detection which, as we will argue, is sufficient to be used
in, e.g., auto-ticketing systems.

CCS CONCEPTS

• Software and its engineering → Publish-subscribe / event-

based architectures; • Computing methodologies → Super-

vised learning by classification; • Human-centered comput-

ing → Ubiquitous and mobile devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401741

KEYWORDS

Mobile Context, Sensor Event Streams Analysis, Deep Learning,
Event Matching, Intelligent Transportation

ACM Reference Format:

Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann. 2020. Deep-
Match: Deep Matching for In-Vehicle Presence Detection in Transportation.
In The 14th ACM International Conference on Distributed and Event-based

Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3401025.3401741

1 INTRODUCTION

Within logistics and public transportation, there is a strong need
for accurate and intelligent detection of mobile context situations
of users, smart devices and vehicles. By mobile context, we refer to
any kind of information that can be used to characterize spatiotem-
poral properties of a mobile entity [12]. An example is the position
data of a moving vehicle making it possible to find out its current
location. Public transportation providers in many countries (e.g.,
in Northern Europe) are providing smartphone applications for
their passengers, in which the user can, e.g., purchase tickets and
get route guidance. A key feature to enhance the next generation
of these mobile context-aware applications is the integration of
information about the presence of a passenger in a vehicle. An
advantage of this extension is that it becomes easier to determine
the exact flow of passengers between particular places. This makes
it possible to plan optimal public transport networks in which pas-
sengers are offered rides when they need them and are brought to
their destinations without the need to change vehicles often if at
all. Further, peak hours can be detected and the supply of vehicles
is optimized accordingly.

If the in-vehicle presence detection is highly accurate, we can
also make the ticketing of passengers considerably simpler. In ex-
isting smartphone applications, the passengers have to remember
buying tickets before starting a ride. Moreover, in order to buy the
right ticket for the intended trip, they need to have fair knowledge
about the ticketing system of the transport provider. In contrast,
using a highly accurate in-vehicle presence detection solution, a
so-called Be-In/Be-Out (BIBO) system [20], tickets can be auto-
matically issued to the passengers based on the exact duration of
their ridings on vehicles. Thus, they can conveniently enter and
leave public transport vehicles without having to deal with the
transportation provider in advance. If this seamless way of travel

97

https://doi.org/10.1145/3401025.3401741
https://doi.org/10.1145/3401025.3401741

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

is accepted by many passengers, there is no need for cost inten-
sive ticket checkpoints, ticket machines, and passenger controls
anymore.

Existing solutions for in-vehicle presence detection are based on
two different approaches. The first group applies communication
systems such as Radio Frequency Identification (RFID) or Bluetooth
Low Energy (BLE). While travelling, temporary connections are
built up between the user’s mobile device and certain fixed vehicle
equipment through which evidence can be established that the pas-
senger is within the vehicle. Prominent examples for such systems
are EasyRide [8] and SEAT [22]. Approaches in the other group
use event streams from smartphone sensors to analyze for certain
properties. Modern smartphones are provided with a variety of
sensors such as magnetometers, accelerometers, gyroscopes, GPS,
and barometers which offer unprecedented opportunities to ana-
lyze mobile context information from the user’s environment. Two
prominent solutions for sensor-based analysis are HybridBaro [27]
and RideSense [19]. We will argue later that the accuracy of both
categories above is still not high enough.

In this paper, we address the accuracy problem and propose a
highly autonomous approach that can detect in-vehicle presence
with a sufficient degree of precision. A central aspect of our ap-
proach is to equip each vehicle with a reference device (e.g., an
Android phone). This allows us to deduce the presence of passen-
gers in the vehicle based on the match between the stream of events
generated by sensors of the reference device and those measured
by the sensors of the passengers’ smartphones. We propose the
system DeepMatch which provides a deep learning model to ver-
ify in-vehicle presence. The new learning architecture is based on
Stacked Convolutional Autoencoders, used for feature extraction
and dimensionality reduction. Matching is provided using a fully
connected neural network. DeepMatch is a distributed framework,
where feature extraction and dimensionality reduction is offloaded
to the users’ smartphones, while the matching process is performed
in a server, e.g., a cloud server. Using Stacked Convolutional Au-
toencoders, our model not only learns the most essential features of
the sensed data stream (i.e., encoded data), but also finds out which
part of the stream can be omitted without deteriorating matching.
The part of the model running on a server compares the input
encoded data of a smartphone with that of the corresponding refer-
ence device and outputs a value indicating the probability of the
two data sources being present in the same vehicle. The server can
be realized as a centralized unit out of the vehicle. Alternatively, it
can be locally installed in the vehicle, e.g., in the reference device,
or on a local router in the vehicle following the principle of fog
computing [1].

The model is trained on real data traces gathered by a group of
people using public transportation in two large Norwegian cities.
The evaluation results show that the statistical accuracy, the so-
called F1-score, of DeepMatch is 0.978 for in-vehicle presence
detection outperforming the two well-known technologies Nor-
malized Correlation by 4%, and Dynamic Time Warping by 16%.
This can provide a significant advantage for practical in-vehicle
presence detection as we will discuss later.

The rest of this paper is organized as follows. In Section 2, we dis-
cuss existing solutions followed the presentation of our in-vehicle

presence detection approach in Section 3. In Section 4, the experi-
mental evaluation results are reported. We conclude the paper with
a discussion of our future plans in Section 5.

2 RELATEDWORK

As mentioned above, existing solutions for in-vehicle presence
detection are based on either utilizing communication technologies
or analyzing mobile sensor events. These approaches are presented
in this section followed by the discussion of some recent works
leveraging deep learning for mobile context detection.

2.1 Communication Technology-based

Solutions

Early in-vehicle presence detection systems were based on active
RFID tags, carried by the passengers, and a single communication
unit in the center of vehicles. A contactless, mid-range radio-based
identification and communication protocol was used for tracking.
One of the first solutions was EasyRide [8], developed by the Swiss
Railways Association. Allfa [7] is another RFID-based system, tested
for half a year in busses, trams and trains in Dresden, Germany. Due
to the weak transmitter strengths of the active tags, it is difficult to
guarantee that all of them are detected in the vehicle. As discussed
in [8], this affords a vast number of readers in the vehicle, at least
one at each door. However, such approaches still suffer from lack
of enough detection precision. For instance, Allfa has an accuracy
rate of just 68% making it unsuitable for practical use.

Another category is based on BLE. Compared with active RFID
approaches using battery-powered tags, BLE-based BIBO systems
can utilize smartphones with additional monitoring options, the
possibility to measure signal strengths for proximity determination,
larger distribution channels, etc. The first BLE-based solution is
proposed in [20], while [14] suggests a ticketing system adding a
custom profile on top of the BLE to fulfill the payment procedure. In
SEAT [22], a BLE-enabled smartphone communicates with devices
installed in vehicles to track the journey for automatic pricing. Its
main focus is on security, performance, and battery friendliness,
but not on the accuracy of the in-vehicle presence detection. The
authors of [20] are cautiously optimistic that BLE might work for
BIBO systems. However, the chassis of a vehicle does not limit
the accessibility of a BLE transmitter which makes it possible that
somebody close to it, e.g., a person in another vehicle, is wrongly
detected. On the other hand, things in a vehicle may inhibit a BLE
connection such that devices in the vehicle are not detected. This is
confirmed by the authors of [15] when using BLE for indoor local-
ization. While precise indoor location seems to be more complex
than “just” finding out if somebody is in a vehicle, we expect similar
accuracy problems.

2.2 Mobile Sensor Event Analytics-based

Solutions

Existing work in this field analyzes the data stream of the sensors
in user smartphones to detect mobile contexts in transportation.
Our extensive experiments and the obtained results, reported in
Section 4.4.1, show that the smartphone barometer is the only use-
ful sensor for in-vehicle presence detection since the position and
orientation of the phone as well as the movements of its carrier

98

DeepMatch: Deep Matching for In-Vehicle Presence Detection in Transportation DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

influence the measurements of other sensors. This is also confirmed
by related approaches that mostly focus on analyzing the barometer
data. In [21], Sankaran et al. demonstrate that the barometer can
be applied to detect user activities of IDLE, WALKING, and VEHI-
CLE at low-power through their context-detection algorithm, using
four stages; pre-processing, jump detection, peak detection and
walk detection. Likewise, in [25], user activities are classified using
the barometer sensor on smartphones. This approach leverages
Bayesian networks, decision trees, and RNN as inference models
to predict user action, e.g., riding or leaving a cable-car. In [10],
the authors demonstrate how the pressure data collected from a
smartphone barometer can be utilized to accurately track driving
patterns. An expansion is to correlate pressure time-series data
sensed by the barometer against topographic elevation data and
road maps for a given region. This allows a centralized server to
estimate the possible routes through which users have driven. An
example is HybridBaro [27], featuring a hybrid algorithm to adap-
tively utilize GPS data to increase the detection accuracy in flat
areas. RoadSphygmo [5] uses the barometer in smartphones to
detect traffic congestion. RideSense [19] is aimed to match a pas-
senger’s sensor trace against the traces of buses to determine the
riding and leaving times.

The important finding of the above approaches is that the barom-
eter can be used as a reliable sensor on smartphones for mobile
context detection scenarios. However, they all require continuous
sensor event measurements and transmission. Further, while better
than RFID and BLE, the accuracy promised by these approaches
is still not good enough to fulfill the demands of transportation
systems. For example, the accuracy of RideSense for more than
20 hours of traces from five bus lines is between 84 to 98%. As
pointed out in Section 4.5, only the uppermost value of 98% would
be sufficient for using this technology in practice. Lower levels of
accuracies are not acceptable considering the large number of daily
trips made through different public transport modes in a city, e.g.,
950,000 daily trips in Oslo as an average sized city.

2.3 Mobile Sensor Events and Deep Learning

In some recent works, deep learning has been leveraged to ana-
lyze sensor events for detecting mobile contexts. In [26], the au-
thors report on the accuracy of models such as RNN, CNN, various
Hybrid models, Restricted Boltzman Machines, and Autoencoders
with respect to their ability to classify human activities from body-
worn sensors. They conclude that, compared to traditional pattern
recognition methods, deep learning reduces the dependency on
human-crafted feature extraction and achieves better performance
by automatically learning high-level representations of the sensor
events. The authors also state that, from a technical viewpoint,
there is no model outperforming all the others in general. Thus,
they recommend to choose the models based on the requirements of
specific scenarios. DeepSense [28] uses CNN and RNN to provide an
estimation and classification framework for car tracking with mo-
tion sensors and human activity recognition. In [30], DeepSleepNet,
a deep learning framework for automatic sleep stage scoring based
on electroencephalogram data, is proposed. The authors show that
the model automatically learns features for different datasets with-
out utilizing any hand-engineered features. The model achieves

Figure 1: A sample scenario presenting DeepMatch.

an accuracy that is similar to the state-of-the-art methods using
hand-engineering. From the ML-based stream matching perspec-
tive, StreamLearner [18] is a distributed Complex Event Processing
(CEP) system proposed for scalable and low-latency event detec-
tion on streaming data that uses neural networks. StreamLearner is
mainly designed for systems with multiple event sources causing
diverse patterns in the event streams. Its case study is detecting
anomalies (i.e., abnormal sequences of sensor events) in smart fac-
tories.

The important finding of most works in this category is that deep
learning can outperform hand-crafted feature extraction methods
when applied to mobile sensor event streams. This can be used to
deduce valuable information about the mobile context. We aim to
exploit this power of deep learning in DeepMatch to build a model
capable of highly accurate in-vehicle presence prediction solely
based on sensor event streams. In addition, the limited work carried
out on ML-based sensor stream matching, is more focused on the
quality of stream matching, e.g., to provide higher throughput.

3 DEEPMATCH

In this section, we first provide an overview of our approach. Then,
we explain the hardware and software settings on which Deep-
Match is built, followed by the presentation of our mobile stream
data analysis and matching approach and a detailed description of
the associated design and architecture model.

3.1 Overview

Figure 1 shows a simple scenario that we use to outline our ap-
proach. Three passengers are traveling with a bus. Everybody car-
ries a smartphone with an app featuring the DeepMatch learn-
ing model. As fixed equipment, the bus is provided with a BLE-
transmitter and a reference device (RefDev) that uses the same type
of sensors as found on the smartphones. When a passenger enters
the bus, the mobile app is awoken by the OS based on detecting
the BLE signal. The application then immediately starts to retrieve
sensor data. Moreover, it performs feature extraction converting the
sensed data to a lower dimensional representation. The compressed
version of the data is timestamped and tagged with the ID of the
BLE signal awakening the application, before it is transmitted to
a remote server. Simultaneously, RefDev is measuring, transform-
ing and transmitting event streams of its own sensors to the same
server. Thus, the server receives two sets of data that are compared
to infer whether the two sensors are in the same vehicle. For that, a
special module carrying out the matching analysis is employed. In

99

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

Section 3.4, we explain the learning model used for the matching
analysis in detail. If the result of this analysis is that two data sets
with the same BLE-transmission ID are collected in the same vehi-
cle, and one of them is produced by RefDev, the person carrying
the smartphone producing the other one is assumed to be in the
same vehicle.

3.2 Hardware Requirements and System

Settings

As indicated above, a RefDev equipped with equal sensors as a
typical smartphone, is required to collect the same sensor events
with an identical frequency. The RefDev is used to provide a ground
truth for the in-vehicle presence detection. Through our empirical
experiments, we found out that using only the barometric sensor
provides both the best matching accuracy as well as a very low
power consumption. This is discussed in Sections 4.4.1 and 4.8.
The barometric sensors was initially introduced in smartphones to
reduce GPS delay by providing the 𝑧 coordinate. As described in
Section 2, this sensor can also be applied to provide highly accurate
contextual information. It guarantees position-independence, resis-
tance to vibrations, and high sensitivity to changes in elevation that
are properties of high value to implement the matching process
(see [21]). Position-independence, i.e., the sensor’s ability to provide
useful data independently of the sensor’s location, is particularly
important for underground transportation in tunnels, subways and
trains, where for instance GPS is very inaccurate. Vibration resis-

tance is important for the ability to measure the movements of the
vehicle rather than the movements of the user. With respect to this
property, the barometer clearly outmatches the accelerometer and
gyroscope sensors, which are often more sensitive to the move-
ments of a user’s hands than to those of the vehicle. This results in
the fact that DeepMatch with the barometer renders a precision of
97.8% while, with the two other sensors, only around every other
matching is correctly detected (see Table 4). Finally, a high elevation

sensitivity is critical for extracting useful context data in flat terrain,
as demonstrated in Section 4.6. In [10], Bo-Jhang H. et al. report
that relative pressure sensitivity for the Bosch BMP280 sensor used
in the iPhone 6 and Nexus 5 is sensitive to elevation changes of 10
to 20 cm, even better than the specified vertical resolution of about
one meter reported by Bosch in [2].

Besides the RefDev, the vehicle is provided with a BLE trans-
mitter that, in contrast to the communication technology-based
approaches discussed in Section 2, is not directly used for in-vehicle
detection. Instead, its task is to wake up the app in the passenger’s
smartphone when entering a vehicle as well as to align the data
produced by this smartphone with those sensed by the RefDev. Both
Android and iOS provide the ability to start “sleeping” applications
when a BLE-signal with a pre-defined ID is detected. Thus, our
application only turns on and collects the sensor events when the
phone is close to a BLE-transmitter registered in the application.
Due to the imprecise nature of BLE, a transmitter may not only
be readable in its own vehicle but also in its environment. In this
case, e.g., in a bus terminal, a smartphone may read several BLE
transmitter inputs simultaneously. The IDs of these BLE transmit-
ters are sent together with the collected data to the server. In this
way, the service running on the server does not need to compare

Table 1: Example datapoints

Sensor Value Timestamp Trip Device
Accelerometer 0.117311 3366... 15 75i3...
Magnetometer 21.835773 3366... 15 75i3...
Gyroscope 0.059957 3366... 15 75i3...
Barometer 993.281097 3366... 15 75i3...

the user data with those of all RefDevs in the transport network,
but only with those related with detected BLE transmitters. This
significantly reduces the workload of the server. Further, if we use
local servers in the vehicles, e.g., letting RefDev conducting match-
ing, the BLE transmitter can be used to forward the data from the
user’s smartphones to the server.

If a vehicle enters a dead spot, i.e., an area with no cellular net-
work coverage, and we use a central server, the encoded data will
be temporarily stored on the device and tagged with timestamps
and BLE IDs. When the vehicle leaves the dead spot, the locally
stored data will then be transmitted to the server for a delayed
in-vehicle presence detection.

3.3 Mobile Data Analysis

The deep learning model of DeepMatch performing the in-vehicle
prediction has to be trained based on real sensor events collected
from RefDev and passenger devices. In this subsection, we describe
how the real sensor events are collected and converted to the train-
ing and evaluation datasets used to train the model.

3.3.1 Data Collection and Preprocessing. The sensor events used
to train our deep learning model are collected by means of the
DataCollector, an Android application that we developed for this
purpose. The application can be configured to listen to events from
any available sensor in the smart device, and to store and timestamp
them locally as datapoints, see Table 1. The data from various runs
can then be uploaded to a computer running ourData Analysis tools.
Moreover, the application contains a simple server-client communi-
cation protocol using websockets. This allows us to connect several
devices and to synchronize their clocks. In this way, the collection
of sensor events can be carried out synchronously. The data col-
lection is performed between two stops along the route of a public
transportation provider, where all datapoints collected between the
two stops are stored as a Trip. All trips are registered with a unique
trip ID, propagated from the server device to all clients.

The sensor framework provided by Android allows developers to
determine the sampling rate of each available sensor. The sensors
generate events, using this sampling rate as a guideline, usually
with a standard deviation of one to two milliseconds. To perform
sensor event matching, however, we need a fixed sampling rate
across all sensors and devices for a trip. This is achieved through
our Data Analysis tool by interpolating the data collected by each
device individually. The interpolation of a trip’s data is done by first
defining a global start time extracted from the data. Thereafter, this
start time is substracted from the timestamps of all datapoints to get
a relative timestamp. In the next step, we interpolate the values for
each sensor event set with a fixed frequency, and finally remove the
original data. With these fixed timestamp and interpolated values,

100

DeepMatch: Deep Matching for In-Vehicle Presence Detection in Transportation DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Table 2: An Example of interpolated data

Timestamp Accel. Magneto. Barom. Gyrosc.
0 ms 5.62421 21.83577 989.28109 0.05995
20 ms 5.58418 22.83491 989.28610 0.13596
40 ms 5.53032 24.54790 989.27981 0.07716
60 ms 5.67377 25.12537 989.26586 0.08019

Figure 2: Matching samples created from trip segments.

we can now create a new table where the rows represent timestamps
and each column contains the value for the given timestamp.

3.3.2 Dataset Creation. An important goal of DeepMatch is to
minimize the amount of data needed to perform in-vehicle detec-
tion which reduces the amount of data to be transmitted between
the devices and the server as well as the number of calculations per-
formed by the server. To this end, we trained our model to perform
predictions based on smaller segments of the trip data. Our Data
Analysis tool converts the interpolated data from a trip, shown in
Table 2, into trip segments by splitting the trip data into smaller
segments of a fixed length. Furthermore, all segments are tagged
with the ID of the trip they belong to, in addition to a segment
number following the naming convention <trip id>_<segment nr>,
e.g., the first segment of a trip with id 15 becomes 15_0 and the
second 15_1. This will be the same for all devices used to gather
data for Trip 15. The tool allows us to configure the length of the
segments freely to find out which one renders the best matching
results. However, when applying the tool to train and use the deep
learning model, all segments must have the same length.

The created segments are used to build samples for a matching

dataset. The samples in this dataset belong to eitherClass 1 orClass 0.
Class 1 consists of samples from segments with the same trip id and
segment number, i.e., sensor events captured by two devices at the
same time in the same vehicle. Samples from Class 0 are created
from segments with different trip ids or segment numbers. They
represent sensor events not captured at the same time or in the
same vehicle, as shown in Figure 2.

3.4 Design and Architecture of the Learning

Model

The main goal of the DeepMatch learning model is to perform
feature extraction, dimensionality reduction, and matching. As
alreadymentioned, the overall in-vehicle presence detection process
will be performed in a distributed fashion that is depicted in Figure 3.
The feature extraction and dimensionality reduction take place both
in the smartphones of the passengers and the reference devices
fixed in the vehicles. They are performed by Encoder Modules, which
are shown in form of green networks in Figure 3. These encoders

Figure 3: Overview of the DeepMatchmodel design.

reduce the size of the original sensor events stream by a factor
of four. In consequence, the bandwidth necessary to transmit the
sensor data from the devices to the server will be reduced to a
fourth in comparison to sending all the originally sensed data. The
main objective of the encoder is to guarantee the preservation
of characteristics and features of the data necessary for accurate
matching.

The encoder is part of a neural network topology, called Autoen-

coder [6]. It is composed of two parts, an encoder and a decoder.
Autoencoders are used to learn efficient, often lower-dimensional
representations of their input through unsupervised training. The
encoder maps the autoencoders input to a latent representation in
latent space, i.e., an internal representation of its input. The decoder
maps this latent representation to a reconstructed representation
of the Autoencoder’s original input. The amount of information
passed from the encoder to the decoder is typically restricted, forc-
ing the Autoencoder to prioritize the most relevant information
in its input. In DeepMatch, we use dimensionality reduction to
restrict the encoder in order to achieve the size reduction by the
factor four.

The matching predictions are performed on the server by a
fully connected deep neural network, called the Matching module,
depicted as a blue network in Figure 3. To achieve a high in-vehicle
presence detection accuracy, this module has to learn and fine-tune
the spatiotemporal thresholds to distinguish the samples in Class

1, i.e., segments taken in the same vehicle at the same time, from
those in Class 0, i.e., segments sensed during different trips or at
different locations.

The Matching module and the Autoencoder are developed and
trained jointly using the architecture shown in Figure 4. Different
types of Autoencoders exist. In DeepMatch, we use a Stacked Con-
volutional Autoencoder (CAE) [17] in which the encoder is created
from stacks of alternating convolutional (conv) and maxpool lay-
ers. The conv layers are responsible for feature extraction and the
maxpool layers for dimensionality reduction.

As previously mentioned, the decoder is the part of the Autoen-
coder responsible to recreate a copy of its input from the latent
representation output by the encoder. It is created from stacks of
alternating conv and upsample layers. Conv layers are specially
suited to detect and extract time-invariant features in sequences,

101

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

Figure 4: DeepMatchmodel architecture.

see [16, 17, 23, 26]. The maxpool layers perform dimensionality
reduction using the max operator. The upsampling layers reverse
this process by duplicating each value in its input sequence, e.g.,
the sequence 1, 2, 3 would become 1, 1, 2, 2, 3, 3.

In Fig. 4, the specifics of our deep model are shown. The green
boxes represent the layers of the encoder and the orange ones the
layers of the decoder. The grey boxes show layers without trainable
parameters and the blue ones the layers of the Matching module.
Each convolution layer represents the following three operations
sequentially: convolution, rectified linear unit activation (ReLU, i.e.,
𝑟𝑒𝑙𝑢 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥)) and batch normalization [11]. Every other
layer in the encoder is a maxpool layer, using a stride size of 2, and
every other layer in the decoder is a upsample layer, with size of
2, doubling the size of their input. The task of the flatten layer is
to reshape any 𝑁 -dimensional input to an 1-dimensional output,
whilst the reshape layer reverse this process. In our model, the
encoder consists of four convolutional layers, three maxpooling

layers, one flatten layer and one dense layer. The decoder consists
of five convolutional layers, three upsample layers, one reshape
layer and one dense layer. The last part of the learning model in
DeepMatch, the Matching module, consists of three consecutive
fully connected dense layers, all using ReLU activation and batch
normalization.

The DeepMatch model is distributed amongst the server, the
reference device, and the passenger devices. The encoder module
is embedded in the smartphones and reference devices whilst the
Matching module is implemented in the server. The decoder module
is only used during training and not in the execution of in-vehicle
presence detection.

To train the overall model depicted in Fig. 4, the CAE is dupli-
cated, sharing all trainable parameters𝑊 in a network topology
known as a Siamese Architecture. This architecture has been applied
with great success in matching problems like face recognition [13],
signature verification [3], and human identification using gait recog-
nition [29]. The Siamese architecture allows the model to accept
two sensor data segments at the same time, e.g., segment𝑋𝑎 and𝑋𝑏 .
Since the two CAEs share the same weights, the encoder performs
an identical mapping of the segments. Therefore, if the segments
are matched (i.e., they belong to a sample of Class 1), the latent
representations 𝑒𝑎 and 𝑒𝑏 should also be matched. Likewise, 𝑒𝑎 and
𝑒𝑏 should be different for samples belonging to Class 0. Through
joint training of both the CAE and the Matching module, the en-
coder learns to prioritize both, features of the segments that are
necessary for the decoder to recreate them, and features needed by
the Matching module for matching.

3.5 Model Training

This subsection describes the training routine for the model shown
in Fig. 4. We describe two sensor data segments belonging to a
matching sample as 𝑋𝑎 and 𝑋𝑏 (see Section 3.3.2) while the binary
label 𝑌 refers to the ground truth class of a sample, i.e., 𝑌 = 1 for
Class 1, and 𝑌 = 0 for Class 0. Through the encoder layers of the
Siamese CAEs, 𝑋𝑎 and 𝑋𝑏 are mapped to lower-dimensional latent
representations 𝑒𝑎 and 𝑒𝑏 , shown as dark green squares in Fig. 4.
Thereafter, we map 𝑒𝑎 and 𝑒𝑏 through the decoder layers which
results in the segment recreations 𝑋 ′

𝑎 and 𝑋 ′
𝑏
. Finally, we feed 𝑋 ′

𝑎

and 𝑋 ′
𝑏
to the Matching module which returns the class prediction

𝑌 ′, i.e., 𝑌 ′ = 1 if the segments are matched and 𝑌 ′ = 0 otherwise.
The goal of the model training, of course, is to reduce the dis-

agreement between the ground truth label𝑌 and the class prediction
𝑌 ′ for as many samples as possible. To achieve that, we also need to
reduce the disagreement between the original segments 𝑋𝑎 and 𝑋𝑏
and the recreated ones 𝑋 ′

𝑎 and 𝑋 ′
𝑏
. To quantify the disagreements

between original and recreated segments, we use Mean Squared

Error :

𝐿 =
1
𝑛

𝑛∑
𝑡=1

(𝑋 ′
𝑎 [𝑡] − 𝑋𝑎 [𝑡])2

Here, 𝑛 is the overall time span of segment 𝑋𝑎 while 𝑋 ′
𝑎 [𝑡] is the

recreation of the datapoint 𝑋𝑎 [𝑡] ∈ 𝑋𝑎 at the point of time 𝑡 . As a
loss function for the Matching module to quantify disagreements
between 𝑌 and 𝑌 ′, we apply Binary Cross Entropy:

𝐿 = −𝑌 · 𝑙𝑜𝑔(𝑌 ′) + (1 − 𝑌) · 𝑙𝑜𝑔(1 − 𝑌 ′)

102

DeepMatch: Deep Matching for In-Vehicle Presence Detection in Transportation DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

𝑌 ′ is the predicted label of the sample containing segments 𝑋𝑎 and
𝑋𝑏 , and 𝑌 its ground truth.

The disagreements found by the loss functions described above
are used to update the trainable parameters of the model through
Stochastic Gradient Descent. We emphasize that the gradients from
both loss functions are backpropagated to the encoders. This enables
the encoders to extract not only the most defining features of its
input, but also the features relevant for matching prediction.

3.6 Design Rationale behind the DeepMatch

Model

To find out the best model, we conducted hundreds of experiments
on various model configurations. Every configuration was evalu-
ated using the performance metrics described in Section 4.1 on the
dataset described in Section 4.2. To obtain a useful model archi-
tecture, we tried increasing as well as decreasing the number of
convolutional layers in the CAEs and swapping the convolutional
layers for dense layers. Moreover, we tried multiple variants of
the Matching module, using convolutional layers instead of dense
layers, varying the size and number of dense layers, and also ex-
changing the Matching module with a function calculating the
Euclidean Distance between the latent representations and using
this for matching predictions. We tried stacking convolutional lay-
ers as feature extractors instead of using Autoencoders, removing
the need for loss calculations between the input and recreated
segments. In addition to different model architectures, we tested
various hyperparameter settings such as adjusting the number and
sizes of filters in each conv layer, and trying various output sizes
on the dense layers of the Matching module. From all our experi-
ments, the architecture in Fig. 4, using the hyperparameter settings
described in 3.4, rendered the best performance.

All experiments (i.e., training and evaluation) were performed
on a desktop PC with an Intel i7 4.00GHz CPU, 16 GB memory,
and a Nvidia GTX 1080 GPU. The models were created, trained and
evaluated using Google Tensorflow 2.0, version 2.0.0-rc0 [24].

4 EVALUATION

In this section, we first describe the performance metrics chosen
to evaluate our learned models. Thereafter, we explain how the
data used during training and evaluation was collected and pre-
processed. Moreover, we show the performance results from seven
sensor modality variations of our model. For that, we investigated
not only the barometer but also accelerometer, magnetometer, and
gyroscope sensors as well as various combinations. Further, the
performance results for DeepMatch 5, DeepMatch 10 and Deep-
Match 15 are compared. These variants refer to three different
segment sizes of the best sensor modality with lengths of 5, 10 and
15 seconds, respectively. Afterwards, we compareDeepMatchwith
two well-known baseline methods. The results of evaluating these
methods against our datasets are reported and the performance
comparison between DeepMatch and those methods is discussed.
To further illustrate the accuracy of barometer-based DeepMatch,
we look also at the special case of very flat terrain, a worst case sce-
nario when only barometer data is used. In addition, we investigate
the execution time overhead of the Matching module carried out on

the server. Finally, the battery consumption as well as the CPU and
run-time overhead for the passenger smartphones are evaluated.

4.1 Definitions and Metrics for Evaluation

A positive sample represents segments belonging to Class 1, and
a negative sample those from Class 0. Furthermore, according to
the common denominations in binary classification, we define the
following terms: True Positive (TP): a correctly classified positive
sample; True Negative (TN): a correctly classified negative sample;
False Negative (FN): a positive sample wrongly classified as negative;
False Positive (FP): a negative sample falsely classified as positive.

The following four metrics are used for evaluation:
• Precision (PR): The ratio of correct positive predictions to
the total number of predicted positive samples, i.e., out of all
samples classified as positive, how many belong to Class 1:

𝑃𝑅 ≜
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

• Recall (RE): The ratio of correct positive predictions to the
total number of positive samples, i.e., out of all available
positive samples in the dataset, how many were correctly
classified by the model:

𝑅𝐸 ≜
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

• Accuracy (ACC): In a dataset with a 50/50 class distribution,
the accuracy describes how good the model is at classifying
samples from all classes, i.e., it describes how many of all
predictions made are correct:

𝐴𝐶𝐶 ≜
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(3)

• F1-score (F1): The harmonic mean between precision and
recall. The F1-score is useful in cases where the distribution
of classes is not 50/50:

𝐹1 ≜ 2 · 𝑃𝑅 · 𝑅𝐸
𝑃𝑅 + 𝑅𝐸

(4)

We plot the results of our evaluation in so-called Receiver Op-
erating Characteristics (ROC)-graphs which describe how good a
function and/or a model are at distinguishing between the classes in
the dataset. The measurements for the three DeepMatch variants
using barometer data and two baseline methods according to these
metrics will be discussed in Section 4.4.

4.2 Data Collection and Dataset Creation

The data was collected by volunteers, each carrying one to three
Android phones. All phones were connected through the Android
application discussed in Section 3.3.1. The following seven Android
devices were used: Huawei Nexus 5X, two Huawei Nexus P6, Sam-
sung S8, Sony Z3 Compact, Google Pixel XL and Google Pixel 3a.
The data was collected during trips made by public transportation
(i.e., trains, subways, busses and trams) in Oslo and Trondheim, two
Norwegian cities. In total, we collected 21,252 unique 10 second
sensor data segments that consist of events from the magnetometer,
accelerometer, gyroscope, and barometer sensors1. Following the
common practice in machine learning, 70% of the segments were
1The datasets will be available via GitHub. In this version of the paper, we do not share
the GitHub link due to the double-blind review policy of the DEBS conference.

103

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

used for training and 30% for evaluation. Thereafter, matching sets
were created separately for both training and evaluation, result-
ing in a training dataset of 180,408 and an evaluation set of 67,304
unique samples.

The creation of the matching sets was performed separately for
the training and evaluation sets to avoid using the same sensor
event segments in both phases. In this way, any segment used in
the evaluation set has never previously been seen by the model. In
both sets, we selected each 50% of the segment pairs from Class

0 and Class 1. Following this approach, we created seven datasets
containing data from various sensor modality combinations:

• A: Accelerometer
• M: Magnetometer
• B: Barometer
• BA: Barometer and Accelerometer
• BM: Barometer and Magnetoer
• AMG: Accelerometer, Magnetometer and Gyroscope
• AMGB: Accelerometer, Magnetometer, Gyroscope and Ba-
rometer

After training the models on these datasets, and evaluating their
performance on the evaluation sets, the best performing model and
sensor modality were selected for further testing. The next goal
was to test how models trained on segments of varying lengths
would perform. To do this, we created two additional datasets of 5
and 15 second segments from the best performing sensor modality
data.

4.3 Baseline Methods

Two baseline methods were chosen for comparison with Deep-
Match: Normalized Correlation (NORM_CORR) which calculates
the correlation between two sequences by comparing datapoints
in the same temporal position, and Dynamic Time Warping (DTW)

which compares all datapoints in two sequences by warping the
temporal dimension to find the best correlation for any datapoint.

Since DTWdescribes the distance between two sequences, where
a large distance equals a small correlation, we inverse the results
from this function. The goal is to find a way to classify instances
belonging to the two classes in the dataset, using thesemethods. The
assumption is that applying either method on samples belonging
to Class 1, should provide a large value, while samples belonging
to Class 0 should return a small value. To this end, we used the
following equation:

𝑐 = 𝑓 (𝑋𝑎, 𝑋𝑏), 𝑌 ′ =

{
1 if 𝑐 > 𝛼

0 else
The function 𝑓 represents either of the two baseline methods,

and 𝑐 the result of applying 𝑓 to the segments𝑋𝑎 and𝑋𝑏 in a sample
from the dataset. The delimiting value 𝛼 is used to classify instances
of the two classes from their 𝑐 values. To find 𝛼 , we first apply 𝑓 to
all samples in the training set and add the resulting 𝑐-values to a
sorted array. Thereafter, we search for the optimal delimiting value
𝛼 , best able to separate instances in the sorted array. If the value
𝑐 for a sample is larger than the delimiting value 𝛼 , the sample is
assumed to belong to Class 1. Otherwise, it should belong to Class 0.
Optimal 𝛼 values were searched for both NORM_CORR and DTW
using the training set. Then, we evaluated the functions and their

Table 3: Confusion matrix for the barometer-based Deep-

Match 10

Predicted Positive Predicted Negative
Actual positive 33018 634
Actual negative 842 32810

Table 4: Performance comparison various sensor combina-

tions

Model PR RE ACC F1
DeepMatch 10 A 0.5065 0.9531 0.5122 0.6615
DeepMatch 10 M 0.5064 0.9280 0.5118 0.6553
DeepMatch 10 B 0.9751 0.9812 0.9781 0.9781

DeepMatch 10 BA 0.7332 0.9697 0.8082 0.8350
DeepMatch 10 BM 0.7081 0.9708 0.7853 0.8189
DeepMatch 10 AMG 0.5011 0.9646 0.5020 0.6595
DeepMatch 10 AMGB 0.7079 0.9892 0.7905 0.8253

corresponding 𝛼 values on the evaluation set. The results of our
experiments are discussed in the following.

4.4 Experimental Results

During the development of our model, we continuously evaluated
our results using the metrics described above. The confusion matrix,
i.e., the overall number of TP-, TN-, FN-, and FP-rated samples, for
barometer-based DeepMatch 10 is listed in Table 3. The values of
the confusion matrices for the learned models and the two baseline
models allowed us to compute the outcomes according to the four
metrics introduced in Section 4.1. The results are presented in
Tables 4 and 5, and discussed below.

4.4.1 Sensor Modality Experiments. Table 4 depicts the results from
training DeepMatch on various sensor modality combinations
as described in Section 4.2. The numbers show that all models
trained on datasets containing barometer data outperform all other
models. Moreover, the DeepMatch 10 B, trained on barometer data
alone, outperforms all other models. As described in Section 3, the
barometer sensor is precise independently of the position of the
vehicle. In particular, it is resistant to vibrations and sudden user
movements as well as highly sensitive to elevation changes. This
makes it perfectly suited to capture the movements of the vehicle
rather than the movements of the individual user.

The accelerometer and gyroscope, on the other hand, are more
sensitive to the movements of the users. The magnetometer is more
sensitive to magnetic objects in the proximity to the user as well
as to the power unit of the vehicle than to the movements of the
vehicle which makes it also a poor source of data for the model. All
these factors impact the performance of the models, and the results
in Table 4 show that, with one exception, DeepMatch 10 B renders
the best results. That holds particularly for the important ACC
metric that shows the share of correct versus all matchings. The
high RE value of the AMGBmodel indicates that the model correctly
classifies most of the positive samples as positive. It seems, however,
that it has a bias towards false positives, i.e., classifying also negative

104

DeepMatch: Deep Matching for In-Vehicle Presence Detection in Transportation DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Table 5: Performance comparison of the barometer-based

DeepMatch with baseline methods

Model PR RE ACC F1
DeepMatch 5 0.9408 0.9765 0.9574 0.9583
DeepMatch 10 0.9751 0.9812 0.9781 0.9781

DeepMatch 15 0.9348 0.9816 0.9566 0.9576
NORM_CORR 0.9174 0.9595 0.9393 0.9380
DTW 0.9810 0.7350 0.8136 0.8404

samples as positive, which results in a low PR value. Altogether,
limiting ourself to using only the barometer data seems to be the
most promising way to conduct in-vehicle presence detection.

4.4.2 Segment size experiments with the barometer-based Deep-

Match. From the numbers in Table 5, we can conclude that for all
performance metrics, DeepMatch 10 is outperforming DeepMatch

5. This is caused by the difference in segment sizes for the two mod-
els, 512 and 256 data points respectively. Thus, the former model
has more data to learn from than the latter, which explains the
higher quality of its performance. According to this explanation,
however, DeepMatch 15 with its 768 data points should outper-
form the two other models. This is true for RE but not for the other
three metrics where it underperforms at least DeepMatch 10. Due
to the bad PR value in comparison with the good RE result, the
model seems to be biased towards classifying samples as positive
which leads to an extended number of false positives. Probably,
the composition of 15 seconds long segments of our learning set is
non-representative which leads to learning a sub-optimal classifier.
Using a larger dataset, we believeDeepMatch 15 would outperform
DeepMatch 10. We will follow this up in future experiments.

4.4.3 Baseline Methods. From Table 5, we can see that RE, ACC,
and F1 of both baseline methods are lower than the corresponding
metrics for the learned DeepMatch models. The sole exception
is the metric PR for which DTW gave a better result than both
the DeepMatch variants and NORM_CORR. The reason for this is
a correlation of DTW to negative samples that we discuss below.
That causes the consequence that DTW produces only relatively
few false positives which renders the good result for PR. Instead,
it generates a significant number of false negatives spoiling the
values for the other metrics.

Altogether, the two baseline methods seem to be less suited for
in-vehicle presence detection than DeepMatch. For NORM_CORR,
we believe this is due to the sensitivity of the function to time-
lag between its input sequences, e.g., a passenger sitting a couple
of meters behind the RefDev in the vehicle, will experience a lag
between the signals which will result in a lower correlation value
for positive samples. Therefore, the correlation value for some of
the positive samples will be mixed with the correlation value for
negative samples resulting in a less optimal delimiter.

The low performance of DTW is most likely caused due to lack-
ing sensitivity to the temporal dimension. DTWwarps the temporal
dimension between the two sequences to find the shortest distance.
This will result in a very high correlation value for some negative
samples, making it difficult for the delimiter to separate samples
from the two classes. As a result of this, there are relatively few false

Figure 5: ROC-curve for baseline methods (left) and match-

ing calculations execution time (right).

positives at the expense of many false negatives which explains the
discrepancy of DTW’s results for the different metrics in Table 5.
Similar results can be observed in the ROC-graphs for the models.
The left graph in Fig. 5 depicts the ROC-curve for DeepMatch
10, NORM_CORR and DTW. A property of these curves is that, as
larger the areas under the curve are, as better the performance of
the corresponding model will be. According to that, DeepMatch
10 is better than NORM_CORR and much better than DTW what
our RE, ACC and F1 results also reflect.

4.5 Discussion of the Experimental Results

At a first glance, the differences between the accuracies of barometer-
based DeepMatch 10 (𝐴𝐶𝐶 = 0.9781) and the baseline model
NORM_CORR (𝐴𝐶𝐶 = 0.9393) may not seem to be considerable.
In practice, however, they may have a great effect. Let us take an
auto-ticketing system for city busses. Reflecting short distances of
just one or two minutes journey time between two bus stops in an
inner city environment, we assume that six in-vehicle prediction
runs (i.e., six segments of 10 seconds each) are conducted during
this period. To reduce the risk of wrongly billing people who are
not riding in a bus but being, e.g., in a car next to it, the bus opera-
tor may apply a policy to ticket somebody only if at least five of
these six runs predict the user’s smartphone being in the bus. The
likelihood 𝑃𝑐𝑟 that our policy correctly detects a passenger can be
computed as follows:

𝑃𝑐𝑟 = 𝐴𝐶𝐶6 + 6 × 𝐴𝐶𝐶5 (1 −𝐴𝐶𝐶)
Thus, taking the ACC value of NORM_CORR, 𝑃𝑐𝑟 = 95.31% of
all passengers are ticketed on average while the rest travels for
free. This system leads to a revenue reduction of nearly 5% which
few bus operators would accept. With DeepMatch 10, however,
𝑃𝑐𝑟 = 99.32% of the passengers are correctly billed. The loss of
revenue of less than one percent seems to be acceptable since it will
be easily outweighed by reducing the number of ticket machines
and other infrastructure.

Additionally, for the case of wrongly billing non-passengers,
DeepMatch 10 has a significant advantage over NORM_CORR.
Using the policy mentioned above, the likelihood 𝑃𝑒𝑟 of erroneous
ticketing can be calculated by the following formula:

𝑃𝑒𝑟 = (1 −𝐴𝐶𝐶)6 + 6 × 𝐴𝐶𝐶 (1 −𝐴𝐶𝐶)5

That leads to the values 𝑃𝑒𝑟 = 0.000003% with DeepMatch 10 and
𝑃𝑒𝑟 = 0.000469% with normal correlation. In the latter case, around
171 people are wrongly billed in a year if we assume a 100,000 non-
passengers being checked for in-vehicle presence every day which
seems reasonable for a larger city. Thus, more than three such cases

105

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

Figure 6: Match prediction tests for trips on flat roads.

arise every week leading to a lot of compensation claims and bad
press. In contrast, using DeepMatch 10, only a single person is
wrongly billed in a year which seems acceptable.

4.6 Performance in Flat Terrain

In Section 4.4.1, we showed evidence that DeepMatch works best
when only barometer data is used. This, however, may cause a
problem in level areas. Therefore, to measure the accuracy of Deep-
Match in such worst case scenarios, we made different trips in a
very flat region in the central district of Trondheim. Some results
of these experiments are shown in Fig. 6. Plot 1 shows the pressure
measured by two different phones during the same trip, while Plot
2 depicts pressure measurements from two trips using the same
phone. The low amplitudes in all curves show the flatness of the
area. Plot 3 shows the match prediction of DeepMatch 10 based
on the sensor output from the two devices in Plot 1. Plot 4 depicts
the match prediction of our model based on the sensor output from
the two trips in Plot 2. As indicated by Plot 4, DeepMatch detects
dissimilarity at a high accuracy, despite the very similar pressure
values measured by Google Pixel 2 in Plot 2.

4.7 Matching Execution Time

To use DeepMatch-based in-vehicle prediction also in real envi-
ronments, the server needs to be able to do matching calculations
from a large number of concurrently travelling passengers. That
holds particularly for centralized server structures. The right graph
in Fig. 5 shows the execution time of a central server as a function
of increasing concurrent calculations. To increase the operational
speed of our system, we exploited the feature of Tensorflow models
to make several simultaneous predictions on multiple inputs. This
resulted in an execution time of 1,140 milliseconds for 50,000 con-
current matching calculations, all running on one desktop equipped
with a single GTX 1080 GPU. Since all trips between two stops are
far longer than the 1,140 milliseconds, a data center consisting
of just 19 of such computers could serve a city like Oslo with its
950,000 daily passengers even if all of them travel at the same time.

Table 6: Android phones used in the tests

Type Battery capacity Age
Samsung S8 3000 mAh 2 years
LG Nexus 5X 2700 mAh 3 years
Huawei Nxus 6P 3450 mAh 4 years
Google Pixel 3a 3000 mAh 1 year
Sony Z3 compact 2600 mAh 5 years

Table 7: Battery consumption per hour

Brand Data collection Learning Complete
Samsung 25 mA 26 mA 31 mA
LG 23 mA 24 mA 26 mA
Huawei 22 mA 23 mA 25 mA
Google 16 mA 17 mA 18 mA
Sony 15 mA 18 mA 21 mA

4.8 Battery Consumption on Smartphones

In this subsection, we evaluate the battery consumption of Deep-
Matchwhich is crucial for the adoption of our approach in practice.
In general, there are three main sources of battery drain in our
framework, i.e., collecting barometer data, the encoder module for
data processing, and transmitting the processed data to the server.

For our tests, we selected five Android phones from five different
manufacturers that are listed in Table 6. To consider age diversity,
we used phones that are between one and five years old. Besides
the battery capacity, the environment temperature is an important
factor that can influence the performance of batteries. Therefore all
tests were run in an experimental environment with a temperature
of 19◦ Celsius representing the indoor temperature of typical trans-
portation vehicles. Since barometer-based DeepMatch 10 promises
the best overall performance (as discussed above), we consider this
version of our model for the battery measurements.

The battery status is collected from the app using the Batterystats
and Battery Historian tools included in the Android framework [9].
These tools provide functionality to extract details on battery con-
sumption for all applications running on the device. In order to
ensure that the app can listen to barometer events and process
them in intervals of ten seconds, we run the tests in the background
with the wake lock parameter enabled to keep CPU processing on.
Reflecting the above mentioned battery consumption factors, we
use the following three scenarios for our experiments:

• Complete scenario: All three factors of battery consumption,
i.e., the barometer data collection, data processing by the
encoder, and data transmission.

• Learning scenario: Data collection and data processing.
• Data collection scenario: Only barometer data collection.

The results of our tests are depicted in Table 7. The numbers
show clearly that for all five devices, DeepMatch influences the
battery consumption only marginally. For all phones, the battery
usage will be less than 62 mA considering a total travel time of two
hours a day. With a battery capacity of 3000 mAh, this equals 2.1%.
This value is considerably lower than most smartphone apps, as

106

DeepMatch: Deep Matching for In-Vehicle Presence Detection in Transportation DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Table 8: Run Time and CPU overhead

Brand CPU Mean Run Time Overhead

Samsung 2.3 GHz + 1.7 GHz,
Cortex-A53 49 ms 1-2 %

LG 1.4 GHz + 1.8 GHz,
64-Bit Hexa-Core 46 ms 1-2 %

Huawei 2.0 GHz + 1.55 GHz,
64-Bit Octa-Core 52 ms 1-2 %

Google 2.0 GHz + 1.7 GHz,
64-Bit Octa-Core 19 ms 0-1 %

Sony 2.5 GHz Quad-Core,
400 Krait 73 ms 3-4 %

reported in [4]. Therefore, we believe that the battery consumption
of DeepMatch is satisfactory.

4.9 Computational Overhead on Smartphones

In this subsection, we evaluate the computational overhead of the
feature extraction and dimensionality reduction performed by the
barometer-based DeepMatch 10 on smartphones. For these experi-
ments, we used the same smartphones as in the battery consump-
tion analysis. We registered both the run-time and CPU usage of
the encoder module, when it processed sensor events with intervals
of 10 seconds. The results of our tests are depicted in Table 8. The
numbers show clearly that, for all phones, the mean run-time and
CPU overhead of the encoder is barely noticeable. Even for the
oldest model in the tests, the five year old Sony Z3 Compact, the
mean run time of the encoder is 73 ms which affords a CPU usage
of only three to four percent.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed a machine learning-based approach,
called DeepMatch, to address the challenge of in-vehicle presence
detection as an important aspect of mobile context. It utilizes the
sensor event streams of a smartphone to estimate its presence in
a public transport vehicle at the very high accuracy of nearly 98%.
DeepMatch is based on utilizing Stacked Convolutional Autoen-
coders for feature extraction and dimensionality reduction, and
a dense neural network for event stream matching. The feature
extraction and dimensionality reduction run on the smartphone
and the reference device, while the event matching is performed
on a server. Through dimensionality reduction, the datapoints are
reduced by the factor four such that the bandwidth of the data
transfer to the server is considerably reduced without losing the
information of the data necessary to perform matching.

Our future plan is to improve DeepMatch 10 with further data
gathering and model optimization. During 2020, we will implement
a pilot of DeepMatch in a Norwegian city together with a public
transportation provider. Moreover, we intend to research on the
optimum length of the data segments and the frequency of data
gathering (from the reference devices and the smartphones) in order
to minimize the amount of data needed for in-vehicle presence
detection.

REFERENCES

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and its Role in the Internet of Things. In 1st Workshop on Mobile

Cloud Computing (MCC). ACM, Helsinki, Finland, 13–16.
[2] Bosch. 2020. Bosch BMP280. https://www.bosch-sensortec.com/bst/products/

all_products/bmp280. (2020). Accessed: 2020-04-01.
[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

1994. Signature Verification using a “Siamese” Time Delay Neural Network. In
Advances in Neural Information Processing Systems. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 737–744.

[4] Xiaomeng Chen and others. 2015. Smartphone Energy Drain in theWild: Analysis
and Implications. ACM SIGMETRICS Performance Evaluation Review 43, 1 (2015),
151–164.

[5] A. Dimri, H. Singh, N. Aggarwal, B. Raman, D. Bansal, and K. K. Ramakrishnan.
2016. RoadSphygmo: Using Barometer for Traffic Congestion Detection. In 8th

International Conference on Communication Systems and Networks (COMSNETS).
IEEE Computer, Bangalore, India, 1–8.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press, Cambridge, MA, USA, Chapter Autoencoders, 505–528. http://www.
deeplearningbook.org.

[7] T. Gründel, H. Lorenz, and K. Ringat. 2006. The ALLFA Ticket in Dresden.
Practical Experience of Fare Management Based on Be-In/Be-Out & Automatic
Fare Calculation. (2006). IPTS Conference, Seoul, South Korea.

[8] T. Gyger and O. Desjeux. 2001. EasyRide: Active Transponders for a Fare Collec-
tion System. IEEE Micro 21, 6 (2001), 36–42.

[9] Battery Historian. 2019. Batterystats and Battery Historian. https://developer.
android.com/studio/profile/battery-historian. (2019). Accessed: 2019-10-23.

[10] Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, and Mani Srivastava. 2015.
From Pressure to Path: Barometer-based Vehicle Tracking. In 2nd ACM Inter.

Conf. on Embedded Systems for Energy-Efficient Built Environments (BuildSys).
ACM, Seoul, South Korea, 65–74.

[11] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv cs.LG,
arXiv:1502.03167, Article 1502.03167 (2015), 11 pages.

[12] Seungwoo Kang, Youngki Lee, Chulhong Min, Younghyun Ju, Taiwoo Park,
Jinwon Lee, Yunseok Rhee, and Junehwa Song. 2010. Orchestrator: An Active
Resource Orchestration Framework forMobile ContextMonitoring in Sensor-rich
Mobile Environments. In IEEE International Conference on Pervasive Computing

and Communications (PerCom). IEEE Computer, Mannheim, Germany, 135–144.
[13] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese Neural

Networks for One-shot Image Recognition. (2015), 8 pages. https://www.cs.cmu.
edu/~rsalakhu/papers/oneshot1.pdf.

[14] Sriharsha Kuchimanchi. 2015. Bluetooth Low Energy based Ticketing Systems.
Master’s thesis. Aalto University, Espoo, Finland.

[15] Andrzej Kwiecień, Michał Maćkowski, Marek Kojder, and Maciej Manczyk. 2015.
Reliability of Bluetooth Smart Technology for Indoor Localization System. In
International Conference on Computer Networks (CN) (CCIS 522). Springer-Verlag,
Br’unow, Poland, 444–454.

[16] Naveen Sai Madiraju, Seid M Sadat, Dimitry Fisher, and Homa Karimabadi. 2018.
Deep Temporal Clustering: Fully Unsupervised Learning of Time-domain Fea-
tures. arXiv cs, arXiv:1802.01059, Article 1802.01059 (2018), 11 pages.

[17] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked
Convolutional Auto-encoders for Hierarchical Feature Extraction. In International
Conference on Artificial Neural Networks (ICANN) (LNCS 6791). Springer-Verlag,
Espoo, Finland, 52–59.

[18] Christian Mayer, Ruben Mayer, and Majd Abdo. 2017. StreamLearner: Distributed
Incremental Machine Learning on Event Streams: Grand Challenge. In 11th ACM

International Conference on Distributed and Event-Based Systems. ACM, Barcelona,
Spain, 298–303.

[19] R. Meng, D. W. Grömling, R. R. Choudhury, and S. Nelakuditi. 2016. RideSense:
Towards Ticketless Transportation. In 2016 IEEE Vehicular Networking Conference

(VNC). IEEE, Columbus, OH, USA, 1–8.
[20] W. Narzt, S. Mayerhofer, O. Weichselbaum, S. Haselböck, and N. Höfler. 2015. Be-

In/Be-Out with Bluetooth Low Energy: Implicit Ticketing for Public Transporta-
tion Systems. In IEEE 18th International Conference on Intelligent Transportation

Systems. IEEE, Las Palmas, Spain, 1551–1556.
[21] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L Ananda, Mun Choon

Chan, and Li-Shiuan Peh. 2014. Using Mobile Phone Barometer for Low-power
Transportation Context Detection. In 12th ACM Conference on Embedded Network

Sensor Systems. ACM, Memphis, TN, USA, 191–205.
[22] C. Sarkar, J. J. Treurniet, S. Narayana, R. V. Prasad, and W. de Boer. 2018. SEAT:

Secure Energy-Efficient Automated Public Transport Ticketing System. IEEE
Transactions on Green Communications and Networking 2, 1 (2018), 222–233.

[23] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. 2017. DeepSleepNet: A
Model for Automatic Sleep Stage Scoring based on Raw Single-channel EEG.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 11 (2017),
1998–2008.

107

https://www.bosch-sensortec.com/bst/products/all_products/bmp280
https://www.bosch-sensortec.com/bst/products/all_products/bmp280
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Magnus Oplenskedal, Amir Taherkordi, and Peter Herrmann

[24] Tensorflow. 2019. Tensorflow 2.0 RC Tutorials. https://www.tensorflow.org/beta/.
(2019). Accessed: 2019-10-23.

[25] Salvatore Vanini, Francesca Faraci, Alan Ferrari, and Silvia Giordano. 2016. Us-
ing Barometric Pressure Data to Recognize Vertical Displacement Activities on
Smartphones. Computer Communications 87 (2016), 37–48.

[26] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. 2017. Deep
Learning for Sensor-based Activity Recognition: A Survey. Pattern Recognition

Letters 19 (2017), 3–11.
[27] M. Won, A. Mishra, and S. H. Son. 2017. HybridBaro: Mining Driving Routes

Using Barometer Sensor of Smartphone. IEEE Sensors Journal 17, 19 (2017),
6397–6408.

[28] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher.
2017. Deepsense: A Unified Deep Learning Framework for Time-series Mobile
Sensing Data Processing. In 26th International Conference on World Wide Web.
ACM, Perth, Australia, 351–360.

[29] Cheng Zhang, Wu Liu, Huadong Ma, and Huiyuan Fu. 2016. Siamese Neural
Network based Gait Recognition for Human Identification. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Shanghai,
China, 2832–2836.

[30] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. 2016. Exploiting
Multi-Channels Deep Convolutional Neural Networks for Multivariate Time
Series Classification. Frontiers of Computer Science 10, 1 (Feb. 2016), 96–112.

108

https://www.tensorflow.org/beta/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Communication Technology-based Solutions
	2.2 Mobile Sensor Event Analytics-based Solutions
	2.3 Mobile Sensor Events and Deep Learning

	3 DeepMatch
	3.1 Overview
	3.2 Hardware Requirements and System Settings
	3.3 Mobile Data Analysis
	3.4 Design and Architecture of the Learning Model
	3.5 Model Training
	3.6 Design Rationale behind the DeepMatch Model

	4 Evaluation
	4.1 Definitions and Metrics for Evaluation
	4.2 Data Collection and Dataset Creation
	4.3 Baseline Methods
	4.4 Experimental Results
	4.5 Discussion of the Experimental Results
	4.6 Performance in Flat Terrain
	4.7 Matching Execution Time
	4.8 Battery Consumption on Smartphones
	4.9 Computational Overhead on Smartphones

	5 Conclusions and Future Work
	References

