
Triggerflow: Trigger-based Orchestration of Serverless
Workflows

Pedro García López
IBM Watson Research

New York, USA
pedro.garcia.lopez@ibm.com

Aitor Arjona
Universitat Rovira i Virgili

Tarragona, Spain
aitor.arjona@urv.cat

Josep Sampé
Universitat Rovira i Virgili

Tarragona, Spain
josep.sampe@urv.cat

Aleksander Slominski
IBM Watson Research

New York, USA
aslom@ibm.com

Lionel Villard
IBM Watson Research

New York, USA
villard@us.ibm.com

ABSTRACT
Asmore applications are being moved to the Cloud thanks to server-
less computing, it is increasingly necessary to support native life
cycle execution of those applications in the data center.

But existing systems either focus on short-running workflows
(like IBM Composer or Amazon Express Workflows) or impose
considerable overheads for synchronizing massively parallel jobs
(Azure Durable Functions, Amazon Step Functions, Google Cloud
Composer). None of them are open systems enabling extensible
interception and optimization of custom workflows.

We present Triggerflow: an extensible Trigger-based Orchestra-
tion architecture for serverless workflows built on top of Knative
Eventing and Kubernetes technologies. We demonstrate that Trig-
gerflow is a novel serverless building block capable of construct-
ing different reactive schedulers (State Machines, Directed Acyclic
Graphs, Workflow as code). We also validate that it can support
high-volume event processing workloads, auto-scale on demand
and transparently optimize scientific workflows.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
event-based, orchestration, serverless

ACM Reference Format:
Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski,
and Lionel Villard. 2020. Triggerflow: Trigger-based Orchestration of Server-
less Workflows. In The 14th ACM International Conference on Distributed and
Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3401025.3401731

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401731

1 INTRODUCTION
Serverless Function as a Service (FaaS) is becoming a very popular
programming model in the cloud thanks to its simplicity, billing
model and inherent elasticity. The FaaS programming model is
considered event-based, since functions are activated (triggered) in
response to specific Cloud Events (like a state change in a disaggre-
gated object store like Amazon S3).

The FaaS model has also proven ideally suited (PyWren [14],
ExCamera [9]) for executing embarrassingly parallel computing
tasks. But both PyWren and ExCamera required their own ad-hoc
external orchestration services to synchronize the parallel execu-
tions of functions. For example, when the PyWren client launches a
map job with N functions, it waits and polls Amazon S3 until all the
results are received in the S3 bucket. ExCamera also relied on an
external Rendezvous server to synchronize the parallel executions.

Lambda creator Tim Wagner recently outlined [24] that Cloud
providers must offer new serverless building blocks to applications.
In particular, he foresees new services like fine-grained, low-latency
orchestration, execution data flows, and the ability to customize
code and data at scale to support the emerging data-intensive ap-
plications over Serverless Functions.

The reality is that existing serverless orchestration systems are
not designed for long-running data analytics tasks [3, 18]. Either
they are focused on short-running highly interactive workflows
(Amazon Express Workflows, IBM Composer) or impose consider-
able overheads for synchronizing massively parallel jobs (Azure
Durable Functions, Amazon Step Functions, Google Cloud Com-
poser).

We present Triggerflow, a novel building block for composing
event-based services. As more applications are moved to the Cloud,
this service will enable to control the life-cycle of those applications
in a reactive and extensible way. The flexibility of the system can
also be used to transparently optimize the execution of tasks in
reaction to events.

The major contributions of this paper are the following:

(1) We present a Rich Trigger framework following an Event-
Condition-Action (ECA) architecture that is extensible at all
levels (Event Sources and Programmable Conditions and Ac-
tions). Our architecture ensures that composite event detec-
tion and event routing mechanisms are mediated by reactive
event-based middleware.

3

https://doi.org/10.1145/3401025.3401731
https://doi.org/10.1145/3401025.3401731

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

(2) We demonstrate Triggerflow’s extensibility and universal-
ity creating atop it a state machine workflow scheduler, a
DAG engine, an imperative Workflow as Code (using event
sourcing) scheduler, and integration with an external sched-
uler like PyWren. We also validate performance and over-
head of our scheduling solutions compared to existing Cloud
Serverless Orchestration systems like Amazon Step Func-
tions, Amazon Express Workflows, Azure Durable Functions
and IBM Composer.

(3) We finally propose a generic implementation of our model
over standard CNCF Cloud technologies like Kubernetes,
Knative Eventing and CloudEvents. We validate that our sys-
tem can support high-volume event processing workloads,
auto-scale on demand and transparently optimize scientific
workflows. The project is available as open-source in [1].

2 RELATEDWORK
FaaS is based on the event-driven programmingmodel. In fact, many
event-driven abstractions like triggers, Event Condition Action
(ECA) and even composite event detection were already inspired
by the veteran Active Database Systems [21].

Event-based triggering has also been extensively employed in the
past to provide reactive coordination of distributed systems [11, 20].
Event-based mechanisms and triggers have also been extensively
used [4, 6, 10, 17] in the past to build workflows and orchestration
systems. The ECA model including trigger and rules fits nicely to
define the transitions of finite state machines representing work-
flows. In [7], they propose to use synchronous aggregation triggers
to coordinate massively parallel data processing jobs.

An interesting related work is [17]. They leverage composite sub-
scriptions in content-based publish/subscribe systems to provide
decentralized Event-based Workflow Management. Their PADRES
system supports parallelization, alternation, sequence, and rep-
etition compositions thanks to content-based subscriptions in a
Composite Subscription Language.

More recently, a relevant article [22] has surveyed the intersec-
tions of the Complex Event Processing (CEP) and Business Process
Management (BPM) communities. They clearly present the existing
challenges to combine both models and describe recent efforts in
this area. We outline that our paper is in line with their challenge
“Executing business processes via CEP rules", and our novelty here
is our serverless reactive and extensible architecture.

In serverless settings, the more relevant related work aiming to
provide reactive orchestration of serverless functions is the Server-
less trilemma [2] from IBM. In their paper, the authors advocate for
reactive run-time support for function orchestration, and present a
solution for sequential compositions on top of Apache OpenWhisk.

A plethora of academic works are proposing different so-called
serverless orchestration systems like [5, 8, 13, 15, 19, 23]. However,
most of them rely on non-serverless services like VMs or dedicated
resources, or they use functions calling functions patterns which
complicate their architectures and fault tolerance. None of them
offer extensible trigger abstractions to build different schedulers.

All Cloud providers are now offering cloud orchestration and
function composition services like IBM Composer, Amazon Step
Functions, Azure Durable Functions, or Google Cloud Composer.

IBM Composer service is in principle designed for short-running
synchronous composition of serverless functions. IBM Composer
generates a state machine representation of the workflow to be
executed with IBM Cloud Functions. It can represent sequences,
conditional branching, loops, parallel, and map tasks. However,
fork/join synchronization (map, parallel) blocks on an external
user-provided Redis service, limiting their applicabillity to short
running tasks.

Amazon offers two main services: Amazon Step Functions (ASF)
and Amazon Step Functions Express Workflows (ASFE). The Ama-
zon States Language (based on JSON) permits to model task transi-
tions, choices, waits, parallel, and maps in a standard way. ASF is a
fault-tolerant managed service designed to support long-running
workflows and ASFE is designed for short-running (less than five
minutes) highly intensive workloads with relaxed fault-tolerance.

Microsoft’s Azure Durable Functions (ADF) represents work-
flows as code using C# or Javascript, leveraging async/await con-
structs and using event sourcing to replay workflows that have been
suspended. ADF does not support map jobs explicitly, and only in-
cludes a Task.whenAll abstraction enabling fork/join patterns for a
group of asynchronous tasks.

Google offers Google Cloud Composer service leveraging a man-
aged Apache Airflow cluster. Airflow represents workflows in a
DAG (Directed Acyclic Graph) coded in Python, so that it cannot
support cycles. It is not ideally suited for parallel jobs or high-
volume workflows, and it is not designed for orchestrating server-
less functions.

Two previous papers [3, 18] have compared public FaaS orches-
tration services for coordinating massively parallel workloads. In
those studies, IBM Composer offered the fastest performance and
reduced overheads to execute map jobs whereas ASF or ADF im-
posed considerable overheads. We will also show in this paper how
ASFE obtains good performance for parallel workloads.

None of the existing cloud orchestration services is offering
an open and extensible trigger-based API enabling the creation
of custom workflow engines. We demonstrate in this paper that
we can use Triggerflow to implement existing models like ASF
or Airflow DAGs. Triggerflow is not just another scheduler, but a
reactive meta-tool to build reactive schedulers leveraging Knative
standard technologies.

2.1 Cloud Event Routing and Knative Eventing
Event-based architectures are gaining relevance in Cloud providers
as a unifying infrastructure for heterogeneous cloud services and
applications. Event services participate in the entire cloud control
loop from event production in event sources, to event detection
using monitoring services, to event logging and data analytics of
existing event workflows, and finally to service orchestration and
event reaction thanks to appropriate filtering mechanisms.

The trend is to create cloud event routers, specialized rule-based
multi-tenant services, capable of filtering and triggering selected
targets in the Cloud in response to events. Amazon is offering Event-
Bridge, Azure offers EventGrid, and Google and IBM are investing
in the open Knative Eventing project and CNCF CloudEvents stan-
dard.

4

Triggerflow: Trigger-based Orchestration of Serverless Workflows DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

TheKnative project was created to provide streamlined serverless-
like experience for developers using Kubernetes. It contains a set
of high-level abstractions related to scalable functions (Knative
Serving) and event processing (Knative Eventing) that allows the
description of asynchronous, decoupled, event-driven applications
built out of event sources, sinks, channels, brokers, triggers, filters,
sequences, etc.

The goal of Knative is to allow developers to build cloud na-
tive event-driven serverless applications on those abstractions. The
value of Knative is to encapsulate well tested best practices in high-
level abstractions that are native to Kubernetes: custom resource
definitions (CRDs) for new custom resources (CRs) such as event
sources. Abstractions allow developers to describe event-driven
application components and have late-binding to underlying (pos-
sibly multiple) messaging and eventing systems like Apache Kafka
and NATS among others.

Triggerflow aims to leverage existing event routing technology
(Knative Eventing) to enable extensible trigger-based orchestration
of serverless workflows. Triggerflow includes advanced abstrac-
tions not present in Knative Eventing like dynamic triggers, trigger
interception, custom filters, termination events, and a shared con-
text among others. Some of these novel services may be adopted in
the future by event routing services to make it easier to compose,
stream, and orchestrate tasks.

3 TRIGGERFLOW ARCHITECTURE

We can see in Figure 1 an overall diagram of the Triggerflow Archi-
tecture. The Trigger service follows an extensible Event-Condition-
Action architecture. The service can receive events from differ-
ent Event Sources in the Cloud (Kafka, RabbitMQ, Object Storage,
timers). It can execute different types of Actions (containers, Func-
tions, VMs). And it can also enable the creation of custom filters or
Conditions from third-parties. The Trigger service also provides a
shared persistent context repository providing durability and fault
tolerance.

Figure 1 also shows the basic API exposed by TriggerFlow: cre-
ateWorkflow initializes the context for a given workflow, addTrigger
adds a new trigger (including event, conditions, actions, and con-
text), addEventSource permits the creation of new event sources,
and getState obtains the current state associated to a given trigger
or workflow.

Different applications and schedulers can benefit from serverless
awakening and rich triggering by using this API to build different
orchestration services like Airflow-like DAGs, ASF state machines
or Workflow as Code clients like PyWren.

3.1 Design goals
Let’s establish a number of design goals that must be supported in
the proposed architecture:

(1) Support for Heterogeneous Workflows: The main idea is to
build a generic building block for different types of sched-
ulers. The system should support enterprise workflows based
on Finite StateMachines, Directed Acyclic Graphs, andWork-
flow as Code systems.

(2) Extensibility andComputational Reflection: The systemmust
be extensible enough to support the creation of novel work-
flow systems with special requirements like specialized sci-
entific workflows. The system must support introspection
and interception mechanisms enabling the monitoring and
optimization of existing workflows.

(3) Serverless design: The system must be reactive, and only
execute logic in response to events, like state transitions.
Serverless design also entails pay per use, flexible scaling,
and dependability.

(4) Performance: The system should support high-volume work-
loads like data analytics pipelines with numerous parallel
tasks. The system should exhibit low overheads for both
short-running and long-running workflows.

3.2 Trigger service
Our proposal is to design a purely event-driven and reactive archi-
tecture for workflow orchestration. Like previous works [4, 6, 10],
we also propose to handle state transitions using event-based trig-
gering mechanisms. The novelty of our approach precisely relies
on the aforementioned design goals: support for heterogeneous
workflows, extensibility, serverless design, and performance for
high volume workloads.

We follow an Event Condition Action architecture in which
triggers (active rules) define which action must be launched in
response to Events or to Conditions evaluated over one or more
Events. The system must be extensible at all levels: Events, Condi-
tions, and Actions. Let us introduce some definitions:

Definition 1. Workflow: We can represent a workflow as a
Finite State Machine (FSM) being a 6-tuple with
M = (

∑
in,Ctx, S, s, F , δ), in this 6-tuple:

(1)
∑
in : the set of input events

(2) Ctx: the set of context variables
(3) S: the set of states which map to Actions in the ECA model
(4) s: initial state, linked to an initial event
(5) F: end state, linked to a final Termination event
(6) δ : state-transition function: δ : S ×

∑
→ S , based on the

ECA triggers
Definition 2. Trigger (δ): can be defined as the state transition

function. The trigger is a 4-tuple with (Event, Context, Condition,
Action) that moves one state to the following when the condition on
input events holds. In this case, the trigger launches the appropriate
action which corresponds to the next state. Each action will in turn
fire events that may be captured by another trigger. Triggers can be
transient and dynamic (activated on demand) or persistent if they
remain always active.

Its components are:
• Event: Events are the atomic piece of information that drive
flows in Cloud applications. We rely on the standard CNCF
CloudEvents version 1.0 specification to represent events.
To match an event to its trigger, the subject and type fields
of a CloudEvent are used. We use the subject field to match
the event to its corresponding trigger, and the type field to
describe the type of the event. Termination and failure events
use this type field to notify success (and result) or failure
(and code or error information).

5

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

Trigger service worker

RESTful
API

createWorkflow

addEventSource

addTrigger

getContext

Persistent
Storage

EventSource
Subscribers KafkaSource RedisStreamsSource SQSSource

Worker Event Sink

Global Context

Triggers

Match activation event with trigger

Event-Trigger
Processing

Condition

Trigger
Context

Action

Update
State /

checkpoint

Commit
Event

[true]

Google Composer-like
DAGs Interface

Amazon Step
Functions Interface

PyWren imperative
Interface

User defined container or
default Python functions

Events

Figure 1: Triggerflow Architecture

• Context: The context is a fault-tolerant key-value data struc-
ture that contains the state of the trigger during its lifetime.
It is also used to introspect the current trigger deployment,
to modify the state of other triggers or to dynamically acti-
vate/deactivate triggers.

• Condition: Conditions are active rules (user-defined code)
that filter events to decide if they match in order to launch
the corresponding action. Conditions evaluate rules over
primitive events (single) or over composite (group) events.
Composite event information like counters may be stored
in the Context. Conditions produce a boolean result that
represents whether the trigger has to be fired or not.

• Action: Actions are the computations (user-defined code)
launched in response to matching Conditions in a trigger.
An Action can be a serverless function or some code in a
VM or container in the Cloud. When the action is executed,
we consider that the trigger has been fired.

Definition 3. Mapping workflow to triggers: A workflow
can be mapped to a set of Triggers (∆) which contains all state
transitions (δ triggers) in the State Machine.

We will show in next sections how different workflows (Amazon
Step Functions) and Directed Acyclic Graphs (Apache Airflow) can
be transformed to a set of triggers (∆), which is the information
needed by the Trigger service to orchestrate them. For example, to
transform a DAG into triggers, a trigger is added for every edge
(workflow transition) of the graph. In a DAG, every node has its
own unique ID, so the termination event from a task will contain
as subject its ID to fire the trigger that handles its termination and
invokes the next step in the workflow.

Definition 4. Substitution principle: A Workflow must com-
ply with an Action according to triggering (initialization) and final-
ization (Termination Event). A homogeneous treatment of Work-
flows and Actions permits nested workflow composition and itera-
tions.

Definition 5. Dynamic Trigger interception: Any trigger
can be intercepted dynamically and transparently to execute a
desired action. Interception code is also performed with triggers.
It must be possible to intercept triggers by condition identifier or
by trigger identifier. The condition identifier represents each ex-
isting condition in Triggerflow, for example a map condition that
aggregates all events in a parallel invocation. The trigger identifier
represents the unique ID that each trigger receives on creation.

We can introspect workflows, triggers, conditions, and actions
using the Context. And we can intercept any trigger in the system
in a transparent way using the Rich Trigger API. This opens the
system to customize code and data in a very granular way.

4 PROTOTYPE IMPLEMENTATION
We have developed two different implementations of Triggerflow:
one over Knative, which follows a push-based mechanism to pass
the events from the event source to the appropriate worker, and
another one using Kubernetes Event-driven Autoscaling (KEDA),
where the worker follows a pull-based mechanism to retrieve the
events directly from the event source. We created the prototypes
on top of the IBM Cloud infrastructure, leveraging the services in
its catalog to deploy the different components of our architecture.
These components are the following:

• A Front-end RESTful API, where a user connects to interact
with Triggerflow.

• A Database, responsible for storing workflow information,
such as triggers, context, etc.

• A Controller, responsible for creating the workflow workers
in Kubernetes.

• The workflow workers (TF-Worker hereafter), responsible
for processing the events by checking the triggers’ condi-
tions, and applying the actions.

6

Triggerflow: Trigger-based Orchestration of Serverless Workflows DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

In our implementation, each workflow has its own TF-Worker. In
other words, the scalability of the system is provided at workflow-
level and not at TF-Worker level. In the validation (Sec. 6), we
demonstrate how each TF-Worker provides enough event ingestion
rate to process large amounts of events per second.

In our system, the events are logically grouped in what we call
workflows. The workflow abstraction is useful, for example, to dif-
ferentiate and isolate the events from multiple workflows, allowing
to share a common context among the (related) events.

4.1 Deployment on Knative
We mainly benefit from the Knative auto scaler component in Kna-
tive Serving and the routing/filtering service in Knative Eventing.

Any serverless reactive architecture requires a managed multi-
tenant component that is constantly running, monitoring event
sources, and only launching actions in response to specific events.
In this way, the tenant only pays for the execution of actions in
response to events, and not for the constant monitoring of event
services. For example, in OpenWhisk, when we create a trigger for
a Function (like an Object Storage trigger), the system is in charge
of monitoring the event source and only launching the function in
response to events.

In Knative Eventing, each tenant will have an Event Source
that receives all events they are interested in (and have access
to). We register a Knative Eventing trigger for each workflow in
the system. The filtering capabilities of Knative Eventing’s trigger
permit to route events of this workflow to the appropriate TF-
Worker (Condition).

Each workflow event is tagged with a unique workflow identifier.
We have created a customized functions runtime, which generates
function termination events to the desired message broker that
include the selected workflow identifier. If Triggerflowmust receive
events from services which do not include this workflow ID, a
generic filtering service will match conditions to the incoming
event (like “all events of this object storage bucket belong to this
workflow"), tag the event, and route it to the tenant’s Event Source.

As each event contains a unique identifier per workflow, it is easy
for Knative eventing to route this event to the selected TF-Worker.
The TF-Worker is then launched by Knative Serving to process the
event, but it will also scale to zero if no more events are produced
in a period. This ensures the serverless scale to zero and pay as you
go qualities for our Triggerflow service. The TF-Worker accesses
workflow state in the Context persistent store, which is also used
for checkpointing and fault tolerance.

Regarding fault tolerance, Knative Eventing guarantees "at
least once" message delivery, and automatic detection and restart
of failed workers. If a TF-Worker fails, the persistent Context will
restore the state in a consistent manner after the failure. The persis-
tent Context is also used for stateful Conditions, like aggregation
fork-join triggers that perform composite event detection and event
counting.

4.2 Deployment on KEDA
One of the hardest problems in event-driven applications is to deal
with reliability and scalability. Event systems may be receiving
events as soon as they are created ("pushed") or they may process

KEDA
Controller

RESTful
API

Triggerflow
Worker

(TF-Worker)

Triggerflow
Worker

(TF-Worker)

Triggerflow
Worker

(TF-Worker)
Database

Actor

AWS SQS GCP Pub/Sub Apache Kafka

1

2

3

4

7

6w
orkflow

-1
w

orkflow
-2

w
orkflow

-3

Triggerflow
Controller

5

Redis Streams

Figure 2: Prototype deployment on KEDA

them when they are ready ("pull" or "poll") and for both cases they
need to deal with capacity limits and error handling. Knative is
very well suited for push-based scaling as it can auto-scale based
on incoming HTTP requests containing events. Kubernetes Event-
driven Autoscaling (KEDA) is the best option now for event-based
configurable pull-based scaling.

We have also implemented Triggerflow entirely on top of Ku-
bernetes using the KEDA project [16]. KEDA offers pull-based
configurable event queue monitoring and reactive scalable instan-
tiation of Kubernetes containers. KEDA also offers configurable
auto-scaling mechanisms to scale up or down to zero.

In this case, the Triggerflow Controller integrates KEDA for the
monitoring of Event Sources and for launching the appropriate TF-
Workers, and scaling them to zero when necessary. It is also possible
to configure different parameters in KEDA like the queue pulling
interval, passivation interval, and number of events scaling interval.
Different types of workflows may require different configuration
parameters.

The advantage here is that, unlike in Knative Eventing, our
TF-Workers connect directly to the Message Broker (Kafka, Redis
Streams) using the native protocol of the broker. This permits to
handle more events per second in a single pod. As we demonstrate
in the validation, this allows us to handle intensive workloads from
scientific workflows coordinating parallel jobs over thousands of
serverless functions.

Figure 2 shows a high-level perspective of our implementation
using KEDA. In this deployment, Triggerflow works as follows:
Through the client, a user must firstly create an empty workflow
to the Triggerflow registry, and reference an event source that this
workflow will use. Then, the user can start adding triggers to it (1).
All the information is persisted in the database (for example, Redis)
(2). Then, immediately after creating the workflow, the front-end
API communicates with the Triggerflow controller (3), deployed as a
single stateless pod container (service) in Kubernetes, to create the
auto-scalable TF-Worker in KEDA (4). From this moment, KEDA
is responsible to scale up and down the TF-Workers (5). In KEDA,
as stated above, the TF-Worker is responsible for communicating
directly to the event source (6) to pull the incoming events. Finally,
TF-Workers periodically interact with the database (7) to keep the
local cache of available triggers updated, and to store the context
(checkpointing) for fault-tolerance purposes.

7

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

Regarding fault tolerance, we also guarantee "at least once"
message delivery and restarting of failed workers. In this case, the
TF-Worker uses batching to commit groups of events in the Kafka
Event Source once they have been correctly processed. If the TF-
Worker fails, Kafka will just resend the non-committed events to
the TF-Worker and thus ensuring message delivery.

In our Redis implementation, we use Redis both as event broker
(Redis Streams), and as persistent store (for the Context and events).
Again, if the TF-Worker fails, all events are in the event store, so it
will continue with the non-processed events.

If Knative Eventing and KEDA communities converge in the
next months, we will be able to deploy Triggerflow directly on
top of one unified event router technology. It is also possible that
some building blocks of Triggerflow could be moved to the Knative
Eventing kernel. For example, the Knative Eventing community is
now considering more advanced filtering mechanisms (complex
event processing). In that case, our TF-Worker could delegate many
tasks to the underlying event router.

5 USE CASES
To demonstrate the flexibility that can be achieved using triggers
with programmable conditions and actions, we have implemented
three different workflow models that use Triggerflow as the under-
lying serverless and scalable workflow orchestrator.

5.1 Directed Acyclic Graphs
When a workflow is described as a Directed Acyclic Graph (DAG),
the vertices of the graph represent the tasks of the workflow and
the edges represent the dependencies between the tasks. The fact
that a DAG does not have cycles implies that there are no cyclic
dependencies, which would be impossible to fulfill.

The orchestration platforms that rely on DAGs for their work-
flow description, such as Apache Airflow, handle the dependencies
between tasks with their downstream relatives attribute, i.e. upon a
completion of a task execution, these orchestrators look for what
tasks have to be executed after the completed task.

However, from a trigger-based orchestration perspective, it is
more compelling to know what tasks have to be executed before
a certain one, i.e. what are the dependencies of every task, their
upstream relatives. With this information, we can register a trigger
to activate a task’s execution when all termination events from its
upstream relatives are present.

To orchestrate a workflow defined as a DAG with triggers, we
will define a trigger for every edge of the DAG:

• As activation events of the trigger, we register the task IDs
that have to be completed before the tasks that the edge
points to (their upstream relatives).

• As condition, we count the number of events the trigger
has to aggregate before executing the next task (i.e. a join of
a map execution).

• As action, we register the actual task to be executed, ideally
an asynchronous task such as an invocation of a serverless
function.

To orchestrate a workflow in this way, it is assumed that after
an asynchronous task is completed, it will produce a termination

Task3Task3Task3

Task1

Task2

Activation event:
{ T1 }
Action: Map

Activation event: { $init }
Action: Call Async

Activation events:
{ T2, T3 }
Condition: Receive
one term. event from
T2 and N term.
events from T3

<<init event>>

<<end>>

Trigger 1

Trigger 2 Trigger 3

<<invoke async>>

Trigger 4

<<Task 1 term. event>>

<<map>>

<<fan-in>>

Figure 3: Triggers that connect the tasks of an example DAG

event containing its ID to activate the trigger that manages the task
execution that follows it.

To handle a map-join trigger condition, before actually making
the invocation requests, we use the introspect context feature from
the activated trigger action to dynamically modify the condition of
the trigger that will aggregate the events, to set the specific number
of expected functions to be joined. This is used in the case that the
iterator which we map onto has a variable length depending on the
workflow execution.

Furthermore, this approach gives us the opportunity to handle
errors during a workflow runtime. Special triggers can be added that
activate when a task fails, so that the trigger action can handle the
task’s error and halt the workflow execution until the error is solved.
After error resolution (retry, skip or try-catch logic), the workflow’s
execution can be resumed by activating the corresponding trigger
that would have been executed in the first place, as if there had not
been an error.

The DAGs interface implementation is inspired by Airflow’s
extensible DAG definition based on the Operator abstraction. Ac-
cording to Airflow’s core ideas, an Operator describes what is the
actual work logic that is carried out by a task. Airflow offers a
wide variety of operators to work with out of the box, but it can
be extended through the implementation of plugins. This approach
is well suited to Triggerflow’s architecture, thanks to its flexible
programmatic trigger actions and conditions.

To illustrate this approach, Figure 3 depicts how a simple DAG
with call async, maps, and branches is orchestrated using triggers.

5.2 State Machines and Nested Workflows
Amazon Step Functions bases its workflow description on a state
machine defined by a declarative JSON object using the Amazon
States Language DSL.

Similarly to Airflow’s DAGs, a state machine definition in Ama-
zon States Language (ASL) only takes into consideration what is
the next state to execute for each of them. However, from a trig-
ger perspective, it is needed to figure out what states need to be
executed before a given one, so that we can add a trigger that fires
upon a state completion and executes the next one. Therefore, there
will be a trigger for every state transition that handles the state
machine flow logic.

8

Triggerflow: Trigger-based Orchestration of Serverless Workflows DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Nevertheless, a distinctive feature that ASL provides is that a
state can be a sub-state machine. For instance, the primitives map
and parallel, map and branch to an entire state machine, rather
than a single task like in the DAG interface. To manage this feature,
we need a special event that is produced when a state machine
ends. For map and branch joins, we will then join those sub-state
machines instead of single tasks. To do so, we identify each sub-
state machine with a unique tag in the scope of the execution. By
doing so, we also comply with the substitution principle of the
serverless trilemma.

To produce state machine termination events, we need to activate
triggers from within a trigger action/condition function, as state
machine joining is detected in there. To do so, the worker’s event
sink internal buffer was made accessible through the context object
so that a trigger action/condition function can produce the events
that activate the necessary subsequent triggers.

In an Amazon Step Functions execution, the states can transfer
their output to the input of the following state. To reproduce this
functionality, we use the Context of theWorkflow, so that the output
of a state can be saved in the trigger’s context and accessed by other
triggers.

If we consider a state machine to be itself a state, we can seam-
lessly compose ASL definitions in other state machines with its
triggers and connections. Amazon Step Functions, however, is more
limited in terms of task extensibility since we are given a closed set
of state types. We will explain here how these are processed with
triggers:

• Task and Pass states: These state types carry out the actual
workflow computational logic, the rest of the state types
only manage the state machine flux. The Task state relies on
the asynchronous Lambda invoked to signal the next trigger
upon its termination, whereas the Pass state signals itself its
termination event.

• Choice state: The choice state type defines a set of possible
outcomes that execute depending on some basic boolean
logic that can compare numbers, timestamps, and strings.
The trigger approach for this state is simple: for all possible
outcomes apply the condition defined in the Choice state
to the condition field of the trigger that handles its state
execution.

• Parallel state: This state type defines a set of sub-state ma-
chines that run in parallel. In this case, we will iterate each
sub-state machine and collect their IDs. Finally, we add a
trigger that is activated whenever any of those sub-state ma-
chines ends, but it is only executed when it has been signaled
by every sub-state machine.

• Map state: Similarly to the Parallel state type, this state
defines a single sub-state machine that executes for every
element in an iterable data structure input in parallel. Before
executing the sub-state machines, we first add a trigger that,
during its action execution, checks the length of the iterable
object (which is the number of parallel state machines, un-
known until execution), and registers it to the trigger context
that handles the sub-state machines termination stating how
many of them it should wait for.

• Wait state: The Wait state type waits for a certain amount of
seconds, or until a timestamp is reached before continuing.
It can be implemented by registering the activation event
production that activates the trigger to an external time-
based scheduler.

• Fail and Succeed states: The Fail and Succeed states stop
the execution of the state machine and determine if it exe-
cuted successfully or failed. It can be implemented assigning
special actions to their triggers that end the execution of the
workflow.

Figure 4 depicts how an ASF state machine is orchestrated by
triggers.

RunFirst

$init

RunFirst

Map

Map

Outcome1

Outcome1

Outcome2

Outcome2

MapTask

MapTask

StateMachine2

StateMachine2

StateMachine1

StateMachine1

StateMachine3

StateMachine3

Fork

StateMachine0

StateMachine0

$end

<<branch>>

<<choice>>

<<fan-out>>

<<fan-in>>

<<branch join>>

Figure 4: Triggers representation of an ASF state machine

5.3 Workflow as Code and Event Sourcing
The trigger service is also useful to reactively invoke an external
scheduler because of state changes caused by some condition. For
example, Workflow as Code systems like PyWren or Azure Durable
Functions represent state transitions as asynchronous function
calls (async/await) inside code written in Python or C#. Asynchro-
nous invocations and futures in PyWren or async/await calls in
Azure Durable Functions simplify code so developers can write
synchronous-like code that suspends and continues when events
arrive.

The model supported by Azure Durable Functions is reactive and
event-based, and it relies on event sourcing to restart the function to
its current state. We can use dynamic triggers to support external
schedulers like Durable Functions that suspend their execution
until the next event arrives. For example, let’s look at this PyWren
code:

9

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

import pywren_ibm_cloud as pywren

def my_function(x):

return x + 7

pw = pywren.ibm_cf_executor()

future = pw.call_async(my_function , 3)

res = future.result()

futures = pw.map(my_function , range(res))

print(pywren.get_result(futures))

In this code, the functions call_async andmap are used to invoke
one or many functions. PyWren code like this is executed normally
in the client in a notebook, which is usually adequate for short
running workflows. But what if we want to execute a long-running
workflow with PyWren in a reactive way? The solution is to run
this PyWren code in Triggerflow reacting to events. Here, prior
to perform any invocation, PyWren can register the appropriate
triggers, for example:

call_async(my_function, 3): Inside this code we will dynami-
cally register a function termination trigger.

map(my_function, range(res)): Inside this code we will dy-
namically register an aggregate trigger for all functions in the map.

After trigger registration for each function, the function can
be invoked and the orchestrator function could decide to suspend
itself. It will be later activated when the trigger fires.

To ensure that this PyWren code can be restarted and continue
from the last point, we use event sourcing. When the orchestrator
code is launched, an event sourcing action will re-run the code
acquiring the results of functions from termination events. It will
then be able to continue from the last point.

In our system prototype, the event sourcing is implemented in
two different ways: native and external scheduler.

In the native scheduler, the orchestration code is executed inside a
Triggerflow Action. Our Triggerflow system enables then to upload
the entire orchestration code as an action that interacts with triggers
in the system.When Triggerflow detects events that match a trigger,
it awakens the native action. This code then relies on event sourcing
to catch up with the correct state before continuing the execution.
In the native scheduler, the events can be retrieved efficiently from
the context and thus accelerate the replay process. If no events
are received in a period, the action will be scaled to zero. This
guarantees reactive execution of event sourced code.

In the external scheduler, we use IBM PyWren [12], where the or-
chestration code is run in an external system, like a Cloud Function.
Then, thanks to our Triggerflow service, the function can stop its
execution each time it invokes for example amap(), recovering their
state (event sourcing) when it is awaken by our TF-Worker once
all map() function activations finished their execution. Moreover,
to use our event sourcing version of PyWren, it is not required any
change in the user’s code. This means that the code is completely
portable between the local-machine and the Cloud, so users can
decide where to run their PyWren workflows without requiring
any modification. The life cycle of a workflow using an external
scheduler can be seen in Figure 5.

Trigger
Condition:

Join

PyWren code

Termination
Events

map()

call_async() Events
Already

invoked?

Asynchronous invoke

Continue
execution

Add dynamic
trigger

[Yes]

[No]

Stop
execution

Trigger Action:
Replay event
sourcing code Serverless

Function

Start execution

Figure 5: Life cycle of an event sourcing-enabled workflow
as code with IBM-PyWren as external scheduler.

6 VALIDATION
Our experimental testbed consists of 5 client machines with 4 CPUs
and 16 GB RAM. On the server side, we deploy Triggeflow on a
Kubernetes installation (v1.17.3) in a rack of 5 Dell PowerEdge
R430 (2 CPUs Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz - 8
Cores/CPU - 32 Logical processors) machines with 16GB RAM. All
of these machines, including the clients, are connected via 10GbE
network, and run Ubuntu Server 19.04. For the experiments we use
Kafka 2.4.0 (Scala 2.13), Redis 5.0.7, KEDA 1.3.0 and Knative 0.12.0.

6.1 Load test
The load test objective is to demonstrate that our system can support
high-volume event processing workloads in an efficient way. This is
mandatory if we want to support the execution of high performance
scientific workflows.

For the first experiment, we want to measure how many events
per second can be processed by a worker that filters events from a
message broker like Kafka or Redis Streams. Tables 1 and 2 show
the time to process 200K events in a container using different CPU
resources (0.25, 0.5, 1 and 2). Noop means that the worker is not
doing any operation on the event. Join refers to aggregated filters
that process joining for different map jobs with 2000 functions each.
As we can see, the performance numbers tell that the system can
process thousands of events per second.

The second experiment consists of measuring the actual resource
usage (CPU and mem) of 1 Core worker using Redis by injecting
different numbers of events per second (form 1K e/s to 12K e/s).
Figure 6 shows that, with a constant memory footprint, the CPU
resource can cope with increasing number of events per second.

Table 1: Maximum number of processed events/second us-
ing Redis Streams

Cores Ev. Noop (s) Noop (e/s) Join (s) Join (e/s)

0.25 200K 56.09 3565 59.83 3342

0.5 200K 28.03 7135 30.25 6611

1 200K 14.17 14114 14.56 13736

2 200K 11.48 17421 12.02 16638

10

Triggerflow: Trigger-based Orchestration of Serverless Workflows DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Table 2: Maximum number of processed events/second us-
ing Kafka

Cores Ev. Noop (s) Noop (e/s) Join (s) Join (e/s)

0.25 200K 43.89 4556 49.30 4056

0.5 200K 18.01 11104 23.99 8336

1 200K 9.34 21413 11.31 17683

2 200K 5.68 35211 7.56 26450

0 20 40 60 80 100 120 140 160 180
Time (s)

0

2000

4000

6000

8000

10000

12000

Ev
en

ts
/s

Events/s
CPU
Memory

0

20

40

60

80

100

C
PU

 (%
)

0

20

40

60

80

100

120

M
em

or
y

(M
B)

Figure 6: Resource utilization depending on incoming num-
ber of events/second (1 Core w/ Redis)

6.2 Auto-scaling
In this case, the objective is to demonstrate that TF-Workers can
scale up and down based on the current active workflows. We
demonstrate here that our Triggerflow implementation on top of
Kubernetes and KEDA can auto-scale on demand based on the
number of events received in different workflows.

For this experiment, we use the entire testbed described above,
and set the TF-Worker to use 0.5 CPUs and 256MB of RAM. The test
consists of 100 synthetic workflows that send events during some
arbitrary seconds, pause the workflow for a while (simulating a
long-running action), then resume sending events, and finally stop
the workflow. The test works as follows: It first starts 50 workflows
at a constant rate of 2 workflows per second), after 100 seconds it
starts another 50 workflows at a rate of 3 workflows per second,
and finally, after 70 seconds, it starts 15 more workflows at a rate
of also 3 workflows per second.

The results are depicted in Figure 7. It shows how the TF-Workers
scale up when the workflows start to send events, and scale down,
even to zero (second 210 and 250), when the active workflows do
not produce any event due to a long-running action. We can see
how Triggerflow leverages the KEDA auto-scaler to activate or
passivate workflows. Triggerflow is automatically providing fault
tolerance, event persistence, and context and state recovery each
time a workflow is resumed.

6.3 Completion time and overhead
The validation in this section demonstrates that Triggerflow shows
comparable overhead to public Cloud orchestration systems. We
must be fair here: we are comparing an implementation of Trigger-
flow over dedicated and idle resources in our rack against public

multi-tenant cloud services that may be used by thousands of users.
The objective is not to claim that our system is better than them,
but only to demonstrate that we can reach comparable overhead
and performance. Furthermore, most cloud orchestration systems
are not designed for highly concurrent and parallel jobs, which can
limit their performance in those scenarios.

We evaluate the run-time overhead of Amazon’s, IBM’s, and
Microsoft’s orchestration services. We consider as overhead all the
time spent outside the functions being composed, which is easy
to measure in all platforms. For a sequential composition д of n
functions д = f1 ◦ f2 ◦ · · · ◦ fn , it is just:

overhead (д) = exec_time(д) −
n∑
i=1

exec_time(fi).

It is important to note that our overhead definition includes
the delays between function invocations, and the execution time
of the orchestration function (for IBM Composer and ADF) or the
delays between state transitions (for ASF). In the case of Triggerflow,
the overhead depends on all the services in the architecture—i.e.,
latency to access Kafka or Redis, latency to invoke functions in IBM
CF, etc.

For all the tests, we use a single TF-Worker with 0.5 CPU Cores
and 64MB of RAM, and we list only the results when functions
are in warm state. This implies that we do not consider the cold
start of spawning the function containers and VMs. Our focus
is on measuring the overhead of running function compositions.
All the tests are repeated 10 times. The results displayed are the
median of those 10 samples and the standard deviation for the
error intervals. Measurements are done during March of 2020. For
IBM Cloud Functions (IBM CF) and AWS Lambda executions, we
use the Python 3.8 runtime. The exception is Azure, which does
not currently support Python for ADF, but C#. The orchestration
functions are implemented in the default language available in
each platform: Node.js for IBM Composer, and C# for ADF. ASF
orchestration is specified in Amazon States Language (JSON-based
format) using the console editor.

For the sequential workflows, we quantify the overhead for se-
quential compositions of length n in {5, 10, 20, 40, 80}. For simplicity,
all the functions in the sequence are the same: a function that sleeps
for 3s, and then returns. For the parallel workflows, we define a work-
flow with a single parallel stage composed of n parallel instances of
the same task, with n ranging from 5 to 320, and doubling each time.
This task has a fixed duration of 20 seconds. Consequently, any
execution of the experiment should ideally last 20 seconds, irrespec-
tive of n or the environment. To put it in another way, in an ideal
system with no overhead, the execution time of the n concurrent
tasks should match that of a single task. Therefore, we compute the
overhead of the orchestration system by subtracting the fixed time
of a single task, namely 20 seconds, from the total execution time.

6.3.1 DAGs and State Machines. For the DAG and State Machine
use cases, we evaluated our DAG engine interface against IBM
Composer, AWS Step Functions, AWS Step Functions Express, and
Azure Durable Functions. It is important to state that these results
are exactly the same we would get for the State Machine imple-
mentation over Triggerflow. Sequences and parallel jobs in state
machines and DAGs use the same triggers.

11

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

0

20

40

60

80

W
or

ke
rs

Active workers (pods)

0 100 200 300 400 500
Time (seconds)

0

20

40

60

80

W
or

kf
lo

w
s

Active workflows

Figure 7: TF-Worker auto-scaling test using KEDA

5 10 20 40 80

Number of sequential functions

101

102

103

104

105

O
ve

rh
ea

d
(m

s)

Triggerflow (IBM CF + Redis)
AWS Step Functions Express
AWS Step Functions

IBM Composer
Azure Durable Functions

Figure 8: DAG overhead comparison for sequences

Sequential workflows. The resultant overhead is represented in
Figure 8. In general, Triggerflow’s overhead is higher than in other
orchestration systems. In this case, almost all overhead comes from
the IBM Cloud Functions invocation latency using its public API,
which is about 0.13s. When multiplied by 80 functions, it adds up
to approximately 10 seconds of overhead. Amazon Step Functions,
however, can use internal trigger protocols rather than the public
API, which explains the lower invocation latency. In addition, it
seems that using Express Workflows does not provide a consid-
erable speed improvement compared to regular ASF when using
sequential workloads, so they are probably not worth the extra cost
for this kind of job. IBM Composer is the fastest in sequences, but
with the drawback of its limitation of only 50 transitions per com-
position. Finally, Azure Durable Functions present competent over-
heads, although being quite unstable for short sequences. This is
probably because ADF is designed and optimized for long-running
sequential workloads.

Parallel workflows. For small-sized compositions (5 to 10), we
can see in Figure 9 that Triggerflow and AWS Step Functions yield
similar overhead, both being outperformed by Express Workflows
nonetheless. Express Workflows has a wider range of error though,
while regular Step Functions, Triggerflow and IBM Composer are
more stable. Express Workflows perform similarly regardless of
the number of parallel functions until it reaches about 80, when
its performance drops drastically and the overhead skyrockets for
no apparent reason. From 80 functions and up, Express Workflows
and IBM Composer have similar overheads.

5 10 20 40 80 160 320

Number of parallel functions

101

102

103

104

105

O
ve

rh
ea

d
(m

s)

Triggerflow (IBM CF + Redis)
AWS Step Functions Express
AWS Step Functions

IBM Composer
Azure Durable Functions

Figure 9: DAG overhead comparison for parallel workflows

From 80 parallel functions and up, we also see that Triggerflow
has the lowest overhead, proving that event-driven function com-
position is indeed well suited for parallel function joining.

Azure Durable Functions yield the worst results when used for
small-sized function joining and is considerably unstable. However,
it turns to be equivalent to the other orchestration systems when
joining a higher number of concurrent functions.

6.3.2 Workflow as Code and Event Sourcing. The objective here
is to evaluate Workflow as Code and event sourcing overheads in
Triggerflow compared to Azure Durable Functions. We compare
both sequential and parallel constructs.

For the event sourcing use case, we evaluate both the external
scheduler (IBM-PyWren) and the native scheduler (Triggerflow ac-
tion). One the one hand, we measure and compare the performance
of our modified version of IBM-PyWren for Triggerflow with the
original version of IBM-PyWren (external scheduler). In this case we
evaluate 4 different scenarios: 1) The original IBM-PyWren, which
makes use of IBM Cloud Object Storage (COS) to store the events
and results. 2) The modified version of IBM-PyWren for Trigger-
flow that stores the results in COS (original IBM-PyWren behavior),
but sends the termination events trough a Redis Stream. 3) The
Triggerflow IBM-PyWren that sends the events and results trough
a Kafka Topic. And 4) the Triggerflow IBM-PyWren that sends the
events and results trough a Redis Stream.

On the other hand, we evaluate the native Triggerflow event
sourcing scheduler, where the orchestration code is executed as
part of the trigger action. In this case we compare the results against
the Azure Durable Functions (ADF) service, which is the only FaaS
workflow orchestration service that employs an event sourcing
technique to execute the workflows.

Sequential workflows. Figure 10 shows the overhead evolution
when increasing the length of the sequence. The overhead added
by both the native and external schedulers grows up linearly based
on the number of functions in the sequence. As we can see, the
results are very stable, meaning that the behavior is implementation-
related, and not a problem with resources.

For the external scheduler, we can see comparable performance
between the original IBM-PyWren and our modified version for
Triggerflow. Overhead evolves similarly in all scenarios. PyWren
has to serialize and upload the function and the data to COS before

12

Triggerflow: Trigger-based Orchestration of Serverless Workflows DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

5 10 20 40 80

10
4

10
5 IBM-PyWren COS

TF + IBM-PyWren COS + Redis
TF + IBM-PyWren + Kafka
TF + IBM-PyWren + Redis

5 10 20 40 80

10
3

10
4

TF + IBM CF + Redis
Azure DF

Number of sequential functions

O
ve

rh
ea

d
(m

s)

Figure 10: Event sourcing overhead comparison for se-
quences. PyWren vs TF-PyWren on the left side. Triggerflow
vs Azure Durable Functions on the right side.

executing it, creating overhead common for all scenarios. The re-
maining overhead comes from the place and the way these events
are retrieved to recover the state of the execution (event sourcing).
This means that the event source service—either COS, Kafka, or
Redis—, has direct impact on these results. For example, the main
drawback of using COS in both the original (1) and Triggerflow (2)
versions of IBM-PyWren is that they have to individually download
the results from COS. This fact substantially increases the total
time needed to execute a workflow, since for each step it has to
retrieve all the previous events. In this case, for a workflow with n
steps, IBM-PyWren has to perform a total of n(n + 1)/2 requests. In
contrast, in the scenarios where IBM-PyWren does not use COS,
and stores the events in a Kafka Topic (3) or a Redis Stream (4), it
only needs one request to retrieve all the events in each step. Then,
it only needs n requests to these services to complete the execution
of a workflow. If we compare scenarios 2 and 3, we see better per-
formance if we use a Redis Stream instead of a Kafka Topic. This is
mainly caused by the Kafka library, which adds a fixed overhead of
0.25s each time the orchestration function is awaken and creates a
consumer. This means that using a Kafka Topic as event store has
a fixed overhead of n ∗ 0.25 seconds.

For the Triggerflow native scheduler, it is important to note that
the functions are already deployed in the cloud (in contrast with
PyWren that has to serialize and upload them each time). More-
over, the orchestration code is execute within the TF-Worker that
contains all the events loaded in memory, so it does not need to
retrieve them from the event source (Kafka, Redis) in each step.
Compared to ADF, we obtain similar overhead. As stated in the
previous section, the overhead comes mainly from the fact that in-
voking an action in IBM CF service takes around 0.13s. This means
that, for a workflow of n steps, Triggerflow has a fixed overhead of
n ∗ 0.13 when using IBM CF.

Parallel workflows. For this experiment, we evaluate the same
scenarios described above. The results are depicted in Figure 11.
In this case, for the external scheduler, the original IBM-PyWren
and the Triggerflow IBM-PyWren version have also similar over-
head, being scenario 4—which uses Redis as event store—the best
approach. In the Kafka scenario (3), the overhead of 0.25s described

5 10 20 40 80 160 32010
2

10
3

10
4

IBM-PyWren COS
TF + IBM-PyWren COS + Redis
TF + IBM-PyWren + Kafka
TF + IBM-PyWren + Redis

5 10 20 40 80 160 32010
1

10
2

10
3

10
4

10
5

TF + IBM CF + Redis
Azure DF

Number of parallel functions

O
ve

rh
ea

d
(m

s)

Figure 11: Event sourcing overhead comparison for parallel
workflows. PyWren vs TF-PyWren on the left side. Trigger-
flow vs Azure Durable Functions on the right side.

above is negligible, since in this experiment the orchestration func-
tion is awaken only once. The main difference in the performance
between scenarios 1 and 2 is that the original IBM-PyWren is run-
ning all the time and polling the results as they are produced. In
contrast, in the Triggerflow version of IBM-PyWren that uses COS
(2), the TF-Worker first waits for all activations to finish to awake
the orchestration function, that then has to retrieve all the events
and results from COS. Finally, with the native scheduler, Triggerflow
is faster for parallel workflows compared to ADF.

6.4 Scientific Workflows
We adapted a geospatial scientific workflow, that was originally im-
plementedwith IBM-PyWren, to workwith our DAGs interface. The
objective of the workflow is to compute the evapotranspiration and
thus the water consumption of the crops from a set of a partitioned
geographical region using the Penman-Monteith equation. Due to
the nature of the workflow, and despite the optimizations applied,
the workflow’s execution time is similar to that provided by IBM-
PyWren. The main difference lies in the workflow programming
model: DAGs are more geared towards dissecting the workflow into
independent tasks and their dependencies, while PyWren opts for
a map-reduce model. An important point in favor of Triggerflow is
its automatic and transparent fault tolerance provided by the event
source and trigger persistent storage. Figure 12 depicts the progres-
sion of a workflow run of the scientific workflow, using Kafka as
the event source and Redis for the trigger storage. To check the
system’s fault tolerance, we intentionally stopped the execution of
the Triggerflow worker and the IBM-PyWren execution in the 20th
second of the workflow execution. Triggerflow rapidly recovers the
trigger context from the database and the uncommitted events from
the event source, and finishes its execution correctly. In contrast,
IBM-PyWren stops and loses the state of the workflow, having to
re-execute the entire workflow wasting time and resources.

To demonstrate Triggerflow’s ability to introspect triggers with
its Rich Trigger API, we have also implemented a service over the
DAGs interface that automatically and transparently prewarms
function containers on IBM Functions to increase the efficiency and
overall parallelism, reduce total execution time and mitigate strag-
gler functions effects in workflows that require high performance

13

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro García López, Aitor Arjona, Josep Sampé, Aleksander Slominski, and Lionel Villard

0 10 20 30 40 50 60

Time (s)

0

100

200

300

400

500

E
ve

nt
s

pr
oc

es
se

d

Triggerflow DAG worker
System failure
Triggerflow DAG respawned worker
IBM PyWren

Figure 12: Scientific workflow execution progression over
time, with an intended system failure at the 20th second.

0 20 40 60
Time (s)

0

50

100

150

200

250

300

N
um

be
r

of
 c

on
cu

rr
en

t f
un

ct
io

ns Warm
Cold

0 10 20 30 40
Time (s)

0

100

200

300

400

500

600

N
um

be
r

of
 c

on
cu

rr
en

t f
un

ct
io

ns Warm
Cold

Figure 13: (a) Parallelism and total execution time in a se-
quential workflow that increases its map size and execution
time every step. (b) Parallelism and total execution time of
a single map task with high concurrency.

and throughput. Figure 13 shows its effects. Thanks to Triggerflow’s
interception mechanisms we can also transparently apply other
data pre-fetching optimizations in scientific workflows.

7 CONCLUSIONS
We have presented in this paper Triggerflow: a novel building block
for controlling the life cycle of Cloud applications. As more applica-
tions are compiled to the Cloud, our system permits to encode their
execution flow as reactive triggers in an extensible way. The novelty
of our approach relies on four key aspects: serverless design, ex-
tensibility, support for heterogeneous workflows, and performance
for high-volume workloads.

TriggerFlow can become an extensible control plane for deploy-
ing reactive applications in the Cloud. We implemented and val-
idated different orchestration systems based on State Machines
(ASF), Directed Acyclic Graphs (Airflow), and Workflow as Code
(PyWren).

Finally, the major limitations about TriggerFlow as an event-
based orchestration system are debuggability and developer experi-
ence. As an open source project, TriggerFlow would clearly benefit
from tools and user interfaces to simplify the overall observability
and life-cycle support of the system.

ACKNOWLEDGMENTS
This work has been partially supported by the EU Horizon 2020
programme under grant agreement No 825184.

REFERENCES
[1] [n.d.]. Triggerflow. https://github.com/triggerflow/triggerflow.

[2] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, VinodMuthusamy, Ro-
dric Rabbah, Philippe Suter, and Olivier Tardieu. 2017. The Serverless Trilemma:
Function Composition for Serverless Computing. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2017). 89–103.

[3] Daniel Barcelona-Pons, PedroGarcía-López, Álvaro Ruiz, AmandaGómez-Gómez,
Gerard París, and Marc Sánchez-Artigas. 2019. FaaS Orchestration of Parallel
Workloads. In Proceedings of the 5th International Workshop on Serverless Com-
puting (WOSC ’19). Association for Computing Machinery, New York, NY, USA,
25–30. https://doi.org/10.1145/3366623.3368137

[4] Walter Binder, Ion Constantinescu, and Boi Faltings. 2006. Decentralized orches-
tration of composite web services. In 2006 IEEE International Conference on Web
Services (ICWS’06). IEEE, 869–876.

[5] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. 2019. In Search
of a Fast and Efficient Serverless DAG Engine. arXiv preprint arXiv:1910.05896
(2019).

[6] Wei Chen, Jun Wei, Guoquan Wu, and Xiaoqiang Qiao. 2008. Developing a
concurrent service orchestration engine based on event-driven architecture. In
OTM Confederated International Conferences" On the Move to Meaningful Internet
Systems". Springer, 675–690.

[7] Dong Dai, Yong Chen, Dries Kimpe, and Rob Ross. 2018. Trigger-based Incre-
mental Data Processing with Unified Sync and Async Model. IEEE Transactions
on Cloud Computing (2018).

[8] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 475–488. https://www.usenix.org/conference/atc19/presentation/
fouladi

[9] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, fast and slow: Low-latency video processing us-
ing thousands of tiny threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 363–376.

[10] Andreas Geppert and Dimitrios Tombros. 1998. Event-based distributed workflow
execution with EVE. In Middleware’98. Springer, 427–442.

[11] Sangjin Han and Sylvia Ratnasamy. 2013. Large-scale computation not at the
cost of expressiveness. In Presented as part of the 14th Workshop on Hot Topics in
Operating Systems.

[12] IBM. [n.d.]. IBM PyWren. https://github.com/pywren/pywren-ibm-cloud.
[13] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal

foundations of serverless computing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–26.

[14] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing. ACM, 445–451.

[15] Shannon Joyner, Michael MacCoss, Christina Delimitrou, and Hakim Weath-
erspoon. 2020. Ripple: A Practical Declarative Programming Framework for
Serverless Compute. arXiv preprint arXiv:2001.00222 (2020).

[16] KEDA. [n.d.]. Kubernetes-based event-driven autoscaling. https://keda.sh/.
[17] Guoli Li and Hans-Arno Jacobsen. 2005. Composite subscriptions in content-

based publish/subscribe systems. InACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing. Springer, 249–269.

[18] Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons,
Álvaro Ruiz Ollobarren, and David Arroyo Pinto. 2018. Comparison of faas
orchestration systems. In 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion). IEEE, 148–153.

[19] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. in
press. Serverless execution of scientific workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions. Future Generation Computer Systems
(in press).

[20] Christopher Mitchell, Russell Power, and Jinyang Li. 2012. Oolong: asynchronous
distributed applications made easy. In Proceedings of the Asia-Pacific Workshop
on Systems. ACM, 11.

[21] NormanWPaton and Oscar Díaz. 1999. Active database systems. ACMComputing
Surveys (CSUR) 31, 1 (1999), 63–103.

[22] Pnina Soffer, Annika Hinze, Agnes Koschmider, Holger Ziekow, Claudio Di Ciccio,
Boris Koldehofe, Oliver Kopp, Arno Jacobsen, Jan Sürmeli, and Wei Song. 2019.
From event streams to process models and back: Challenges and opportunities.
Information Systems 81 (2019), 181–200.

[23] Erwin Van Eyk, Johannes Grohmann, Simon Eismann, André Bauer, Laurens
Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina Abad, and
Alexandru Iosup. 2019. The SPEC-RG Reference Architecture for FaaS: From
Microservices and Containers to Serverless Platforms. IEEE Internet Computing
(2019).

[24] Tim Wagner. [n.d.]. The Serverless Supercomputer. https://read.acloud.guru/
https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08.

14

https://github.com/triggerflow/triggerflow
https://doi.org/10.1145/3366623.3368137
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://github.com/pywren/pywren-ibm-cloud
https://keda.sh/
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08

	Abstract
	1 Introduction
	2 Related work
	2.1 Cloud Event Routing and Knative Eventing

	3 Triggerflow Architecture
	3.1 Design goals
	3.2 Trigger service

	4 Prototype Implementation
	4.1 Deployment on Knative
	4.2 Deployment on KEDA

	5 Use cases
	5.1 Directed Acyclic Graphs
	5.2 State Machines and Nested Workflows
	5.3 Workflow as Code and Event Sourcing

	6 Validation
	6.1 Load test
	6.2 Auto-scaling
	6.3 Completion time and overhead
	6.4 Scientific Workflows

	7 Conclusions
	Acknowledgments
	References

