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ABSTRACT
In this paper we motivate the need for real-time vessel behaviour
classification and describe in detail our event-based classification ap-
proach, as implemented in our real-world industry strong maritime
event detection service at MarineTraffic.com. A novel approach
is presented for the classification of vessel activity from real-time
data streams. The proposed solution splits vessel trajectories into
multiple overlapping segments and distinguishes the ones in which
a vessel is engaged in trawling or longlining operation (e.g. fishing
activity) from other segments that a vessel is simply underway
from its departure towards its destination. We evaluate the effec-
tiveness of our tool on real-world data, demonstrating that it can
practically achieve high accuracy results. We present our results
and findings intended for both researchers and practitioners in the
field of intelligent ship tracking and surveillance.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Distributed algorithms; •Computer systems organization→
Real-time system architecture.
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1 INTRODUCTION
The upsurge in mobility data volume has attracted researchers’
interest in data-driven knowledge discovery and distributed data
processing techniques. Discovering patterns in huge surveillance
datasets is of paramount importance for delivering accurate insights
on vessels’ activities at sea. Today, almost all vessels worldwide
are required to carry an Automatic Identification System (AIS)
transponder. AIS is a global tracking system that allows vessels to
be aware of vessel traffic in their vicinity and to be seen by that
traffic. Through this tracking system vessels broadcast informa-
tion about their location (i.e., GPS coordinates) and behaviour (e.g.,
speed, course, etc.), as well as information about their characteris-
tics such as vessel size, draught and destination. Although AIS was
initially designed for safety purposes and intended to assist officers
on board and maritime authorities to monitor vessels’ mobility, it
soon became apparent that accessing vessels’ mobility data can
provide useful insights for the identification of illegal activities
or abnormal behaviour. Such a use case is hosted by MarineTraf-
fic.com1 where AIS data is used to monitor vessels and extract
meaningful information from their transmitted positions through
an anomaly detection toolkit [9]. The toolkit consumes AIS data
in real-time to search for anomalies such as deviating or abnor-
mal vessel behaviour [52]. This toolkit can be further extended
to support the classification of patterns from the trajectory data.
By employing trajectory classification techniques, it is possible to
classify or match a vessel mobility pattern to a set of predefined
labels. Such a label can be the vessels’ fishing activity during which
they tend to perform characteristic patterns in their trajectories.

Consequently, such an extension of the anomaly detection toolkit
can be used for the immediate identification of Illegal, Unreported
and Unregulated (IUU) fishing activities in prohibited areas or na-
ture protection areas which has gained much attention the recent
years. A study showed that 640,000 tonnes of ghost gear is left in
1https://www.marinetraffic.com/anomaly-detection
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the world’s oceans each year, which entangles and kills around
136,000 turtles, whales, seals, birds, and other sea animals2. These
animals end up suffering long and painful deaths. The US govern-
ment has established the Seafood Import Monitoring Program to
address the issue3. The Food and Agriculture Organization (FAO)
of the United Nations has commissioned a study of IUU fishing
activities to determine whether the Organisation should provide
guidance for the future estimation of IUU fishing activities4. Fur-
thermore, specific fishing activities (e.g., trawling) and fishing gear
are strongly linked to the indigenous fauna, thus a mechanism that
identifies such operations is of utmost importance. For that reason,
several techniques have been developed that take advantage of the
spatiotemporal features of trajectories.

In spatiotemporal analysis, data mining includes trajectory pat-
tern clustering, frequent pattern discovery, trajectory classification,
forecasting and outlier detection. Trajectory classification is a pro-
cess of creating a model that can match the mobility pattern of
an object to a specific label based on certain decision criteria [27].
Though several trajectory classification solutions have been pro-
posed and applied in many mobility applications, less focus has
been given in the maritime domain and specifically in classifying
a vessel’s type [7, 8, 27, 49], characterising shipping operation ar-
eas (e.g., fishing areas [31]), or discovering vessel activity such as
fishing [32, 43], search and rescue operations [19, 46] based on its
trajectory.

However, many of those methods assume a-priori availability of
the whole dataset (i.e., batch processing), have limited availability
of ground truth data and use features that make them inapplicable
to streaming applications. More specifically the training data are
specific to limited vessel types (e.g., only fishing) or the features are
linked to trajectory information such as departure and arrival port,
that can be discovered only through batch analysis of historical
records (i.e., after the completion of a voyage).

Although it is possible to perform event detection in streaming
data, this has been realised only for simple events such as proximity
events and route deviations [9], potential vessel spoofing [22] or
intentional AIS switch-off [21]. Performing complex event analysis
(such as distinguishing vessels’ activities at sea) poses significant
challenges when applied in streaming data (e.g., limited execution
time, memory consumption, data cleaning, etc.).

This paper presents a novel approach for classifying vessel activ-
ity in large volumes of AIS data streams. Each day approximately
46GB of AIS data are generated from up to 200, 000 vessels world-
wide, the velocity of which can reach up to 16, 000 events per second.
For this reason, our proposed classification method exploits the
benefits of Akka5 (which is an open source lightweight framework)
in order to develop a distributed system that can efficiently handle
large volumes of data and predict vessels’ activities in real-time
based on their data streams. Our system relies on the well-known
Lambda architecture [30] in an attempt to balance latency and
throughput for the 4Vs of the Big Data (i.e., Volume, Velocity, Ve-
racity and Variety). More specifically, a ‘batch-processing’ layer is

2https://www.worldanimalprotection.org/illegal-fishing-threatens-wildlife
3https://www.worldwildlife.org/threats/illegal-fishing
4http://www.fao.org/iuu-fishing/tools-and-initiatives/iuu-fishing-estimation-and-
studies/en/
5https://akka.io/

responsible to train the classification model, which is then used
to distinguish the vessel activities in the ‘stream-processing’ layer
at which data continuously arrive from vessels at high rates. Our
approach is tested against vessels sailing at the seas of Northern
Europe in 2018 and is capable of effectively distinguishing between
trawling and longlining operations with high accuracy of over 90%.

The rest of the paper is structured as follows. The next section
(Section 2) refers to the related work in the field of trajectory clas-
sification and anomaly detection. Section 3 describes in detail the
proposed methodology for the classification of fishing activities.
Specifically, in Section 3.1, a brief analysis of fishing vessel be-
haviour in such activities is presented. Section 3.2 presents how the
fishing behaviour is processed to create the classification model,
while Section 3.3 presents the two layers of the approach, namely
the ‘batch-processing layer’ and the ‘real-time processing layer’.
Finally, Section 4 illustrates the experimental evaluation of our
approach and Section 5 concludes the merits of our work.

2 RELATEDWORK
Data mining techniques have been widely used to tackle the prob-
lems of anomaly detection and trajectory classification. Both prob-
lems require a classifier that is trained on several trajectory data
indicating certain behaviours and then try to classify any future
trajectory data that exhibit similar behaviour to a set of predefined
labels. Another approach of detecting anomalies or complex be-
haviours is the research field of Complex Event Processing (CEP),
where a set of predefined rules or patterns created by experts is
given to the system, which later tries to identify such patterns in
streams of events.

Several systems have been developed for the purposes of CEP [2,
11, 12, 14, 36]. The idea behind these systems is the use of a formal
and expressive language which experts use to write patterns. Most
systems use a SQL-like query language [11, 12, 14], while others
employ logic-based rules [2] to describe complex events. These
patterns are then matched against streams of events, usually in real-
time, in order to produce a set of higher level events, called Complex
Events. The field of CEP has attracted much attention the recent
years and as such several well-known, open-source frameworks
have implemented a CEP language such as Apache Flink6. Apache
Flink offers a library, called FlinkCEP, which allows the user to
perform CEP over distributed and streaming data.

Complex Event Processing is not absent in the maritime domain
[37, 38, 40, 45] where the early detection of abnormal or illegal
vessel behaviour is of interest to the authorities. Authors in [37]
present a system which compresses streaming AIS messages to
meaningful low-level events, called Simple Events. Simple events
are then used to build higher, complex events with the use of the
Event Calculus, a logical language for event reasoning. Authors
later expand their patterns [38, 39] to support more complex events
designed for the maritime domain, such as rendezvous of two or
more vessels, fishing and loitering. Tsogas et al. [45] developed
a CEP engine, called TRITON, able to consume messages from
various sources – Maritime radars, Long Range Identification and
Tracking (LRIT) systems, AIS and Earth Observation satellites – and
provide in near real-time, complex events describing encounters

6https://flink.apache.org/
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at sea, drifting, entering/exiting areas of interest and deviations
of usual routes. Similarly, authors in [6] developed a distributed
CEP system able to identify complex events such as AIS hijacking,
engine malfunction or ship collisions.

Although CEP systems provide an expressive way to describe
events, it is not always straightforward to understand when or how
an event occurred, even by experts. For that reason, data analysis
and classification techniques need to be employed in order to infer
knowledge. The studies on anomaly detection and trajectory classi-
fication provide several approaches for the identification of vessel
behaviour. In the field of anomaly detection, several studies have
been conducted in the maritime domain. In [24], authors created
a Gaussian Mixture Model (GMM) in order to identify anomalies
in the trajectory data. Later [25], they compared the GMM with a
Kernel Density Estimator (KDE), evaluated the proposed method-
ologies and showed that there is no significant difference in terms
of classification performance. Pallotta et al [34] tried to model the
vessel behaviour by using the DBSCAN algorithm to create route
objects and waypoints. The resulted traffic model was then used
to detect vessel movements that deviate from normality. Similarly,
other works tried to model the maritime traffic in order to detect
anomalies using unsupervised learning [1, 26, 29]. However, our
approach is more similar to the trajectory classification problem. In
trajectory classification, a set of trajectories with predefined labels
is used as a training set in order to classify any future trajectory or
set of trajectories to a specific label from the training set. Similarly,
a common methodology in anomaly detection, is the use of a set
of outliers or anomalous trajectories as a baseline for classification
algorithms. The goal is to classify a future instance or trajectory as
anomalous or not based on the training data.

In the field of trajectory classification, many works have focused
on analysing the behaviour of the moving objects of interest. Sev-
eral studies have used trajectories from Vessel Monitoring System
(VMS) data to classify fishing activity [4, 17, 47, 50]. Huang et al.
[17] tackle the problem of fishing vessel type identification based
on only VMS trajectories. To do so, they extract trajectory features
that are used in machine learning schemes of XGBoost in order
to classify fishing vessels into nine types, achieving a classifica-
tion accuracy of 95.42%. However, since the usage of AIS became
compulsory for vessels and its positional transmission rate is much
greater compared to the VMS, research studies have shifted towards
the analysis of AIS data. In [31], the authors identified the moves
and stops of fishing vessels in a specific area. To do so, they used a
combination of algorithms, namely CB-SMoT [35] and DB-SMoT
[41], which are able to take into account the speed variation of the
trajectory and the direction of the trajectory respectively. Then,
they used the DBSCAN algorithm to extract clusters indicating
dense areas of fishing activity. Souza et al. [43] analysed the be-
haviour of fishing vessels using three different types of gear, namely
trawlers, longliners and purse-seiners. To distinguish fishing activ-
ity between gear types, they created different classification models
per activity, in order to identify for each fishing activity the seg-
ments of the trajectory during which the vessels were engaged in
fishing. The main drawback of this methodology is that it does
not use a universal classifier for all fishing activities and the gear
type is not always given by the AIS messages. Following the foot-
steps of [43], authors in [18] presented early promising results of

classification performance with the use of neural networks and
autoencoders. They evaluated their approach in 10 longline fish-
ing vessels and compared their methodology with other classifiers
such as Random Forests and SVMs. Similarly, authors in [10] use
the DBSCAN algorithm to extract Points of Interest (POI) in the
trajectories and create features from these points. Later, they use
these features to train a classifier and achieve high-accuracy re-
sults. Finally, in [42], General Hidden Markov Models (GHMM) and
Structural Hidden Markov Models (SHMM) are combined with a
Genetic Algorithm (GA) in an attempt to classify trajectories. Their
approach has been tested in two surveillance datasets, MIT car [51]
and T15 [16], yielding promising results.

Despite the fact that there are many methodologies to detect
fishing behaviour, less works have focused on real-time stream pro-
cessing of events in the maritime domain [3, 5, 28, 33]. These works
focus on solving the ACM DEBS 2018 Grand Challenge. Authors in
[5] treat the problem of destination port prediction as a classifica-
tion problem. Similarly, Lin et al. [28] use a deep neural network
which is fed with features extracted from AIS messages, in order to
predict the Estimated Time of Arrival (ETA) of vessels. For the same
problem, authors in [33] propose a method of spatial grid for the
representation of trajectories as a sequence of historical locations.
Consequently, a sequence-to-sequence model is trained to predict
future locations. Bachar et al. [3], present Venilia, a methodology
for online continuous training using Markov predictive models.

The main difference of our approach is three fold. First, we use a
pre-trained classifier in order to detect fishing activities in real-time,
contrary to the aforementioned methods of trajectory classification.
This is achieved by the use of a two-layer approach in our architec-
ture, the ‘batch-processing layer’ and the ‘stream-processing layer’
where the first one is responsible for training a classifier and the
second one is responsible for creating features online, making our
proposed architecture able to scale to a global dataset. Moreover,
none of the work in the literature creates a connection between
the length of the trajectory in terms of temporal windows and the
classification performance. Patterns start to form properly only af-
ter several hours have passed, thus making the distinction between
activities more clear. Finally, all of the aforementioned approaches
use binary classification in order to detect fishing trajectory seg-
ments from non-fishing trajectory segments and do not focus on the
multi-class classification of the activities, e.g., distinguish trawling
from longlining activity.

3 PROPOSED METHODOLOGY
In this section we describe the investigated fishing methods (i.e.,
trawling and longlining) and the vessels’ behaviour and mobil-
ity patterns when engaged in fishing activities. Furthermore, we
thoroughly detail the features selected for the proposed classifica-
tion model and introduce a lambda-architecture scheme in which
the classification model can be applied for online fishing activity
detection.

3.1 Fishing patterns
Two different fishing methods have been studied in our work,
namely trawling and longlining. Specialised gear equipment is used
in each fishing method, leading to different mobility behaviour
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(a) The movement pattern of a trawling trajectory. (b) The movement pattern of a longlining trajectory.

Figure 1: The movement patterns of fishing activities.

while fishing. Understanding the nature of each operation will give
insights on the characteristics distinguishing one activity from the
other.

Trawling: Fishing vessels engaged in trawling activity use a
fishing net located in the stern of the boat, called trawl, which is
dragged through the water. The net is typically pulled by one or
more fishing vessels, either on the sea floor (i.e., bottom trawling)
or mid-water (i.e., mid-water or pelagic trawling), although single-
boat trawling is usually the case. In single-boat trawling the spread
of the net depends on the trawl doors, also called “otter boards” and
act as wings. To keep the wings steady the vessel must be travelling
at a constant speed and for that reason, during trawling, vessels
usually sail with lower steady speeds.

Longlining: During this type of activity vessels set multiple
fishing lines with baited hooks attached to them, called snoods. The
length of the fishing lines can reach up to a kilometer, while the
total length of all the fishing lines in the entire activity can reach up
to several kilometers [44]. The lines can be deployed either near the
surface (i.e., pelagic longline) or along the sea floor (i.e., demersal
longline). While setting the lines, vessels travel at their steaming
speed or slightly less and they maintain a constant speed. When
all lines are set, they are left in the water for several hours and the
vessel drifts slowly with them. To retract the lines, vessels follow
the same procedure as when setting the lines. The process of setting
the lines, waiting and retracting the lines can be repeated several
times before returning to a port.

In both fishing methods vessels maneuver and make frequent
turns to remain in the same fishing area of interest. However,
longlining is characterised by long straight-line trajectories fol-
lowed by sudden turns. This leads to less maneuvers compared to
trawling when the vessels are observed over the same amount of
time. At this point, it should be noted that both fishing activities
may take up to several hours or even days.

To understand better the behaviour of the fishing activities, their
movement patterns have been unveilled in Figures 1, 2 and 3. Figure
1 depicts two movement pattern paradigms of the studied fishing
activities. In Figure 1a the trajectory of a trawling vessel is illus-
trated and shows that the trajectory is characterised by frequent
and irregular turns. Similarly, in Figure 1b, which illustrates the

trajectory of a longlining vessel, it is apparent that the trajectory,
despite the irregular and frequent turns, included also long and
straight lines.

Figure 2: Speed distribution of fishing vessels.

Figure 2 illustrates the activities’ speed kernel density distri-
bution. The distribution was calculated from the AIS messages
transmitted by the fishing vessels during January and February of
2018. The blue lines refer to the trawling activity, the orange dashed
lines refer to the longlining activity and the green dotted lines refer
to non-fishing activity. From Figure 2 we can observe that both
trawlers and longliners follow similar speed patterns. Both types of
fishing activity have two peaks in their speed distribution, the first
one being in the range of 1 to 3 knots and the second one being in
the range of 7 to 10 knots. A closer inspection though, reveals that
the probability density of trawlers’ speed being in the first peak is
higher than the probability density of longliners’ speed in the same
peak. A similar pattern can be observed for the second peak as
well but with the longliners’ speed now having higher probability
density. Furthermore, in longlining activity, the first peak is slightly
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shifted to the left and the second peak to the right compared to the
trawling activity. This can be explained because longliners have
higher speeds when setting the lines and the duration of the process
takes up a large part of the longlining activity. Moreover, they have
lower speeds (range of 1 to 3 knots), compared to the trawlers, after
setting the lines and before retracting them, which indicates that
they remain stationary drifting along with the lines. Finally, Figure
2 shows that when vessels travel from the ports to the fishing areas
and vice versa, they have higher speeds (range of 9 to 12 knots).

Figure 3: Distribution of number of turns.

Figure 3 illustrates the kernel density distribution of the number
of turns per fishing activity. The blue line represents the trawling
activity and the orange dashed line represents the longline activity.
It can be observed that there is not a clear distinction between the
two fishing activities. However, a closer look reveals that probability
density of trawling activity follows a bimodal distribution with two
modes at 50 turns and 125 turns while the probability density of
longliners is a right skewed normal distribution. This phenomenon
indicates that, during the longline activity, vessels tend to turn
less compared to the trawling vessels. This is due to the fact that
longliners, as already explained in the previous paragraphs, have
long straight-line trajectories.

3.2 Classification of Trajectory Patterns
To create a proper classification model, several features that are
capable to capture the observed behaviour described in Section 3.1
have been selected. Authors in [17] presented a set of features based
on speed for the classification of various fishing vessel types with
the use of XGBoost classifiers on VMS data, yielding results of high
accuracy. Among these features, the average speed and its standard
deviation are of high importance. Following their footsteps, we
selected some of their features and we extended them to be able to
capture all of the trajectory characteristics described in the previous
Section. The features selected do not require batch analysis of data
and can be computed online over streaming data coming in the Akka
system in real-time. The selected features fall into three dimensions;
vessels’ speed, vessels’ drifting and turn frequency.

Features based on speed: Fishing vessels when engaged in
fishing activity tend to maintain a constant speed without any sig-
nificant deviations. Therefore, the Average Speed and the Standard
Deviation of speed play an important role in the identification of
the activity.

• Average Speed: The average speed during a vessel’s trajectory
indicates the value of speed most vessels have during the
fishing activity, which, based on Figure 1a, revolves around
2.5 knots, especially in the trawling activity.

• Standard Deviation: The standard deviation is able to reveal
whether the speed is constant or not during a vessel’s trajec-
tory. A standard deviation close to 0 indicates the steadiness
of the speed.

Features based on drifting: The drifting can be inferred from
the difference between the course over ground (Cog) and the head-
ing of the vessel. The course over ground represents the actual
direction the vessel has along its path, while the heading represents
the direction of the vessel’s bow. Figure 4 visualises an example of
drifting. The two of them might differ due to the effects of wind,
tide or currents of the sea. Two features that may indicate such
behaviour are the Average Drifting and the Standard Deviation of
Drifting.

• Average Drifting: Excessive drifting is indicative of the be-
haviour longline vessels have after they set the lines.

• Standard Deviation of Drifting: The standard deviation of
drifting indicates changes in drifting behavior of a vessel’s
trajectory. There are segments in longliners’ trajectorywhere
the vessels turn their engines off and drift. This behaviour
can be identified by the large values of the standard deviation
of drifting.

Heading

Cog

Drifting

Figure 4: Example of drifting.

Features based on turns: Frequent turns are apparent on fish-
ing vessels regardless of the fishing method (i.e., trawling or longlin-
ing). Although vessels during both activities seem to have a similar
behaviour, three features that are able to reveal hidden characteris-
tics of the patterns have been selected, namely Standard Deviation
of Cog, Number of Turns and Accumulated Angle.
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• Standard Deviation of Cog: This feature indicates that the
vessel does not maintain a steady course, thus it does not
move in a straight line.

• Number of Turns: As the name suggests, it shows the number
of turns the vessel made during a trajectory.

• Accumulated Angle: When the vessel starts turning, either
right or left, it has a certain Cog 𝑐1. Again, when the vessel
stops turning, the Cog has another value 𝑐2. Each turn 𝑡

is terminated when another turn of the opposite direction
starts (e.g., a left turn stops when a right turn starts) or when
the vessel maintains a steady course. The difference between
these two values is the angle of the turn a = c1 − c2 . The sum
of all angles of all turns is theAccumulated Angle A =

∑i=t
i=1 ai .

This feature indicates how much the vessel turned during
its trajectory.

The next step, after all features have been extracted from repre-
sentative trawling, longlining and under way trajectories, is to use
an algorithm able to effectively classify unseen trajectories based
on the features given as a training set. To this end, we chose the
Random Forest (RF) classification algorithm due to its high per-
formance results in the maritime domain [5, 8] and because RFs
combine the predictions of many Decision Trees into one model,
thus they are less prone to overfitting [23]. Furthermore, a Random
Forest classifier is less computationally expensive creating a good
basis for online predictions or online re-training. Finally, Random
Forests require far less data than other state of the art algorithms
such as Neural Networks and it is easier to interpret their predic-
tions based on the features [13], which in an industry setting, such
an interpretation gives meaning to interested stakeholders.

3.3 Real-time stream processing
Low latencies and high throughput in a streaming system that
supports fast decisionmaking are of utmost importance. Specifically,
events must be predicted in real-time, meaning the moment a new
message is consumed, a prediction must be provided with a sub-
second latency. In practice, websites such as MarineTraffic, are
flooded by more than 16, 000 AIS messages per second received
from over 4, 000 terrestrial AIS receivers (without satellite receivers
in the equation). These volumes of data originate from almost
200, 000 vessels globally, totalling in a more than 50GB per day
increase rate. Therefore, an architecture needs to be developed that
is able to balance latency and throughput. To this end, we used
the 𝜆-architecture developed in previous work [9] which achieves
sub-second latencies and high throughput. This architecture allows
the reduction of the performance cost of the online computations
by taking into account pre-computed results. Specifically, the 𝜆-
architecture relies on two layers, the “batch-processing layer” and
the “stream-processing layer”. The former is responsible for creating
pre-computed views of data which in our case is the classification
model. The latter is responsible for processing streaming events
and providing views into the most recent data by taking advantage
of the views from the batch-processing layer, hence predictions
based on the classification model. To this end, we extended the
batch-processing layer of the previously developed architecture
by adding a step responsible for constructing the classification

model. In this section, both the “batch-processing layer” and the
“stream-processing layer” are described.

Batch-processing layer: This layer is responsible for the con-
struction of the Random Forest classification model. For the training
of the model, ground truth trajectories are required. Thus, this layer
consumes as input already labeled trajectories, namely trawling,
longlining and underway. Subsequently, features are extracted per
trajectory and the RF model is created and saved to an “xml” file
which is then consumed by the stream-processing layer. The Statis-
tical Machine Intelligence and Learning Engine (SMILE)7 library
was used for the implementation. SMILE is a Scala library that
supports a wide range of supervised and unsupervised learning
algorithms. Internally, it uses a “DataFrame” structure similar to the
one used in the Pandas8 python library. The benefits of this library
is its performance in terms of speed and memory consumption
and its compatibility with our existing architecture which is imple-
mented in Scala. According to a third party benchmark9, SMILE
outperforms R, Python, Spark, H2O and xgboost significantly.

Stream-processing layer. In order to achieve high-throughput,
low-latency performance, the stream-processing layer is imple-
mented in the Akka10 framework which takes advantage of the
Actor model [48]. Actors in the Akka framework exploit the con-
currency capabilities of threads, they are lightweight and millions
of actor instances can be deployed in a single machine since they
have a small memory footprint (i.e., 2.5 million actors per GB of
heap). To assist the implementation of the classification of fishing
activity, one type of actor from the architecture is used, namely the
Vessel Actor.

The Vessel Actor is responsible for consuming AIS messages
originating from a single vessel and classifying parts of its trajectory
based on the model created from the batch-processing layer. Thus,
each vessel has a dedicated actor which is created after the first AIS
message has been received. The actor remains idle and acts only
when a new message is received. To classify parts of a trajectory
of a vessel, each actor takes into account features extracted from
an event-based window of user-defined length. To reduce memory
consumption, features are extracted online, thus the need of storing
a batch of AIS messages is eliminated. To demonstrate the online
feature extraction, we present the calculation of the moving average
and the standard deviation of speed. The average value of speed is
given by Formula 1:

𝑥𝑛 =

∑𝑖=𝑛
𝑖=1 𝑥𝑖

𝑛
(1)

which can be broken down to the average of n − 1 speed values
plus a speed value of a newly received AIS message 𝑥𝑛 , where 𝑛 is
the total number of messages received in our window:

𝑥𝑛 =
(∑𝑖=𝑛−1

𝑖=1 𝑥𝑖 ) + 𝑥𝑛

𝑛
(2)

Since the average value equals to the sum divided by the total
count:

7https://haifengl.github.io/
8https://pandas.pydata.org/
9https://github.com/szilard/benchm-ml
10https://akka.io/
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Figure 5: System architecture.

𝑥𝑛−1 =

∑𝑖=𝑛−1
𝑖=1 𝑥𝑖

𝑛 − 1
⇒

𝑖=𝑛−1∑
𝑖=1

𝑥𝑖 = 𝑥𝑛−1 (𝑛 − 1) (3)

we can substitute Equation 3 to Equation 2 which results in:

𝑥𝑛 =
(𝑛 − 1)𝑥𝑛−1 + 𝑥𝑛

𝑛
⇒ 𝑥𝑛 = 𝑥𝑛−1 +

𝑥𝑛 − 𝑥𝑛−1
𝑛

(4)

where x̄n−1 is the average speed value of n − 1 AIS messages.
Upon the arrival of the n-th AIS message, we calculate xn−xn−1

n
and add it to the average speed value of n − 1 AIS messages using
Equation 4. When the window closes, all values are reset to zero and
the online calculation of the average value starts over. To calculate
the standard deviation in a streaming fashion, we employ B. P.
Welford’s method [20]. Similarly to the calculation of the moving
average, we need to reach in a state where we have the standard
deviation of 𝑛 − 1 values and we need to recalculate for the 𝑛𝑡ℎ
value. To begin with, the formula of variance, which is the square
of standard deviation, is given by Equation 5:

𝑠2 =

∑𝑖=𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)2

𝑛 − 1
(5)

Then, we can multiply both sides by 𝑛 − 1 and define the first
part of the equation as 𝑑2

𝑛 :

(𝑛 − 1)𝑠2 =

𝑖=𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑛)2 ⇒ 𝑑2
𝑛 =

𝑖=𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑛)2 (6)

Later, we can apply the following identity to Equation 6:

(𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 (7)

which results in:

𝑑2
𝑛 =

𝑖=𝑛∑
𝑖=1

(𝑥2
𝑖 −2𝑥𝑖𝑥𝑛+𝑥2

𝑛) ⇒ 𝑑2
𝑛 =

𝑖=𝑛∑
𝑖=1

𝑥2
𝑖 −2𝑥𝑛

𝑖=𝑛∑
𝑖=1

𝑥𝑖+𝑥2
𝑛

𝑖=𝑛∑
𝑖=1

1 (8)

Similarly to the calculation of the moving average, since we
know that

∑i=n
i=1 1 = n and that the total equals to the mean times

the count, we get the following:

𝑑2
𝑛 =

𝑖=𝑛∑
𝑖=1

𝑥2
𝑖 − 2𝑛𝑥2

𝑛 + 𝑛𝑥2
𝑛 ⇒ 𝑑2

𝑛 =

𝑖=𝑛∑
𝑖=1

𝑥2
𝑖 − 𝑛𝑥2

𝑛 (9)

After reaching Equation 9, we can get the value of 𝑑2 for the first
𝑛 − 1 values, resulting in:

𝑑2
𝑛−1 =

𝑖=𝑛−1∑
𝑖=1

𝑥2
𝑖 − (𝑛 − 1)𝑥2

𝑛−1 (10)

By subtracting Equation 10 and Equation 9 and after a few rear-
rangements to the equations we have the resulting equation:

𝑑2
𝑛 = 𝑑2

𝑛−1 + (𝑥𝑛 − 𝑥𝑛) (𝑥𝑛 − 𝑥𝑛−1) (11)
As with Equation 4 of the moving average, we have a relation

which allows us to calculate the new 𝑑2 value by adding an in-
crement, (xn − xn) (xn − xn−1), to its previous value, d2

n−1. We can
retrieve the variance by dividing d2

n with 𝑛 − 1, which subsequently
gives us the standard deviation 𝑠𝑛 , since 𝑠𝑛 is the square root of the
variance:

𝑠2
𝑛 =

𝑑2
𝑛

𝑛 − 1
⇒ 𝑠𝑛 =

√
𝑑2
𝑛

𝑛 − 1
(12)

Again, when a window is complete, all values are reset and the
calculations start over for the next window. After all features have
been extracted, they are fed to the RF model which outputs a de-
cision along with its probability, indicating the activity the vessel
performs at the current window. Figure 6 illustrates the online
calculation of the average speed. At each incoming AIS message
a new average is calculated. The new average speed calculated
based on the last AIS message, represents the average speed of the
entire window. When the last AIS message of the window is re-
ceived, the classification is triggered. Finally, Figure 5 illustrates the
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system architecture. The batch-processing layer extracts features
from the historical AIS data and trains a classifer. The stream-
processing layer consumes AIS messages from the receivers and
makes a prediction by using the pre-trained classifier generated
from the batch-processing layer.

Window start Window end

Incoming stream of AIS messages

final average speedaverage speed so far

Figure 6: Online calculation of the average speed.

4 EXPERIMENTAL RESULTS
This section describes the dataset used to train and test the Random
Forest classifier and its achieved classification performance. The
achieved latency performance of the distributed and streaming
architecture described in Section 3.3 has already been discussed in
previous work [9].

4.1 Dataset Description
The dataset that was used was provided by MarineTraffic11 and
contains AIS messages during a two-month period, from January
1𝑠𝑡 , 2018 to February 28𝑡ℎ , 2018. The dataset covers the seas of
Northern Europe, specifically the Irish sea, the North sea and the
Baltic sea and contains high quality AIS information without gaps
of information. The AIS transmits two kinds of messages, positional
and static12. Positional messages transmit information about the
vessel’s location, speed, heading and navigational status. The navi-
gational status, which is manually inserted by the vessel’s crew is
an identifier that indicates the vessel’s activity (e.g., 1 indicates that
the vessel was anchored when the message was received). Static
messages transmitted include information regarding the vessel’s
name, its dimensions, the location of its on board positioning sys-
tem antenna and its destination. The destination denotes the port or
area that the vessel is headed but it may also denote the activity the
vessel is currently engaged in. Again, this kind of information is set
manually by the crew. The AIS messages used for our ground truth
dataset contain fishing activities that have been extracted from ves-
sels which have set their navigational status to 7, which indicates
“fishing activity”, and by vessels which have set their destination to
Trawling or Longlining for the corresponding activity. These fishing
trajectories are then segmented to fishing or non-fishing segments.
The total number of AIS messages sums up to 61, 050. Table 1 shows
the number of AIS messages per activity. Although, the number
of messages per activity varies, the number of events per activity
remains the same. This is due to the transmission rate of the AIS
11https://www.marinetraffic.com
12https://help.marinetraffic.com/hc/en-us/articles/205426887-What-kind-of-
information-is-AIS-transmitted-

Table 1: Number of AIS messages per activity.

Activity # AIS messages

Trawling 16, 110
Longline 8, 484
Underway 36, 456

protocol. When vessels travel at high speeds, the frequency can
get as high as one message every two seconds, while the lowest
frequency can get as low as one message every 3 minutes when
the vessels are not moving. Since the underway vessels travel at
much higher speeds, the number of AIS messages is also increased.
Another factor affecting the AIS transmision rate is the vessel’s
turn frequency. Since trawling activity is characterised by frequent
turns, the number of AIS messages will be higher compared to
the longlining activity but not higher than the messages of the
underway activity since the speed during trawling is much lower.

4.2 Experimental Evaluation
In this section we provide the evaluation results of the proposed
classification scheme for the identification of trawling and longlin-
ing activities. Firstly we evaluate how various hyperparameters
of Random Forests influence the performance and accuracy of the
proposed classifier providing well-known metrics (e.g., f1-score,
accuracy etc.) for multiple Random Forest configurations. Then, we
evaluate the robustness of the classifier when applied in various
temporal window lengths. Finally, we compare the classification per-
formance of Random Forests against other well-known classifiers.
In our first series of experiments we used the complete trajecto-
ries13 of the dataset fromwhich features are extracted following the
methodology described in Section 3.2. Then, these features are fed
to a Random Forest classifier, tuning in each experiment a different
hyperparameter of the forest. The first hyperparameter selected is
the number of trees of the forest. We use three distinct configura-
tions for the number of trees, numTrees = 10, 50, 100, and run 5-fold
cross validation per setting. The idea behind the Random Forest al-
gorithm is to optimise the prediction of an instance by averaging the
predictions of multiple decision trees. Moreover, for each configura-
tion of numTrees, we tested three distinct configurations of another
hyperparameter of Random Forest, the maximum depth, setting its
value to 2, 5 and 10 respectively. This parameter controls the size of
the trees, specifically defining the maximum number of levels each
tree in the forest can have. Table 2 shows the results of each experi-
mental setting. From the results, we observe that the configuration
with the highest classification performance is numTrees = 100 and
maxDepth = 10 that achieves f1-score of 93.52% and accuracy of
95.33%. Therefore, for the rest of the experiments we used the best
setting from Table 2.

Next, we measured the importance of each feature for our classi-
fier and visualised the results in Figure 7. It can be seen that all the
features are approximately of equal importance with the exception
of the average speed and the standard deviation of speed. This
means that all of the features contribute equally to the decision

13The length of the trajectories can last from few hours to several days.
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Table 2: Classification results per RF hyperparameter.

number of trees maximum depth Accuracy Precision Recall F1-score

10 2 72 % 64.02 % 68.05 % 65.97 %
50 2 74.66 % 62.07 % 65.01 % 63.5 %
100 2 77 % 64.5 % 66.22 % 65.34 %
10 5 89.66 % 84.76 % 88.24 % 86.47 %
50 5 90.66 % 88.13 % 89.81 % 88.96 %
100 5 91.33 % 85.64 % 88.22 % 86.91 %
10 10 92.66 % 89.02 % 88.75 % 88.88 %
50 10 93.33 % 87.71 % 91.91 % 89.76 %
100 10 95.33 % 93.91 % 93.15 % 93.52 %

Figure 7: Feature importances.

of the classifier, but the features that contain the speed factor are
more decisive.

Figure 8: Macro average results per temporal size.

Table 3: Macro average results per temporal size.

Hours Accuracy Precision Recall F1-score

1 82.48 % 82.47 % 82.79 % 82.63 %
2 83.33 % 82.84 % 83.06 % 82.85 %
4 82.53 % 82.83 % 82.55 % 82.69 %
8 84.68 % 84.55 % 84.36 % 84.46 %
12 86.94 % 85.88 % 86.4 % 86.14 %
24 89.54 % 85.06 % 87.38 % 86.2 %

Afterwards, we evaluated the performance of our classifier when
applied in time windows of different length. More specifically, we
segmented each trajectory into temporal segments of 1, 2, 4, 8, 12
and 24 hours. This means that a fishing activity, e.g. trawling is
now segmented into more parts, according to the temporal size.

For each temporal size we performed 5-fold cross validation,
keeping 80% of the trajectories as a training set and the rest 20%
as a test set. The macro average results after the cross validation
are presented in Table 3 and Figure 8. From the results, we can
observe that the accuracy is increased as the time window length
is increased. Furthermore, it can be seen that from the one-hour
window length to the four-hour, the accuracy does not show any
significant change, while from the four-hour window length to the
twenty-four-hour, the accuracy increases abruptly, from 82.53% to
89.54% (i.e., a 7.01% increase). This can be explained due to the fact
that a fishing pattern may take hours to form. The features of each
trajectory start to become distinguishable from one another after
several hours have passed. From our experiments, we can see that
the time threshold with which a pattern in the fishing trajectory is
formed needs to be at least four hours which explains the increase
in the accuracy.

Finally, we compared the Random Forests classifier against three
other well-known classifiers, namely Gradient Boosted Trees (GBT),
Linear Discriminant Analysis (LDA), and Logistic Regression, on
the same set of features. To this end, we performed 5-fold cross
validation, similar to the previous series of experiments of Table
3 and set the temporal size of the trajectories to a fixed length of
24 hours, the maximum length of the trajectories that yields the
best classification performance. For the Gradient Boosted Trees we
used the same hyperparameters to the Random Forests, since both
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Table 4: Macro average results per classifier.

Classifier Accuracy Precision Recall F1-score

Random Forests 89.54 % 85.06 % 87.38 % 86.2 %
Gradient Boosted Trees 90.98 % 86.77 % 87.83 % 87.29 %

Linear Discriminant Analysis 81.4 % 69.13 % 77.71 % 73.17 %
Logistic Regression 79.71 % 76.19 % 75.59 % 75.89 %

of these classifiers use multiple decision trees to make a prediction,
thus making a more direct comparison between the two. For the
rest of the classifiers, we used the default hyperparameters that are
provided by the Smile library. Table 4 presents the macro average
results for each classifier. According to Table 4, Gradient Boosted
Trees slightly outperform the Random Forests, yielding the best clas-
sification performance (a F1-score of 87.29 %), while both the LDA
and the Logistic Regression perform weakly, achieving a F1-score
of 73.17 % and 75.89 %, respectively. Despite the fact that Gradient
Boosted Trees present a higher classification performance, they are
computationally more expensive and are harder to fine-tune [15],
making them the least favorable option for a real-time streaming
system. A more in-depth comparison between the classifiers by
fine-tuning the classifiers’ hyperparameters will be conducted in
the future for a more thorough evaluation.

Three studies in the literature are comparable to our ownmethod-
ology in terms of classification performance [17, 18, 43]. Authors in
[17] present a set of features that is used from XGBoost classifiers
achieving an accuracy of approximately 97%. Despite their high
classification accuracy, several features are best suited for the re-
gion of China and are not applicable to other regions, making it
unsuitable for global fishing detection. Moreover, their methodol-
ogy extracts features based on entire trajectories of nine fishing
vessel types, thus their goal is to identify the vessel type and not the
vessel activity. Souza et al. [43] create three different classifiers for
the detection of trawlers, longliners and purse seiners respectively,
achieving a median accuracy of 83%, 84% and 97% for each activity
correspondingly. The main drawback of their approach is the need
of three separate classifiers, each one performing a binary classifi-
cation task of fishing and non-fishing activity for each vessel type,
compared to our methodology where it acts as a universal classi-
fier of fishing activity. Finally, authors in [18], use autoencoders
to detect whether a longliner vessel is engaged in fishing activity,
achieving an accuracy of 85%. Similarly to [43], they perform a
binary classification task instead of the multi-class classification
task of our approach.

5 CONCLUSION
In this work we presented a methodology for the classification of
fishing activities in a streaming fashion. Specifically, the fishing
behaviour was analysed which led to the selection of a specific
set of features able to describe and characterise two fishing activi-
ties, trawling and longlining. Furthermore, an approach of online
feature extraction and classification was presented which elimi-
nates the need of storing streaming window batches in memory.
Experimental evaluation showed the analysis of the hyperparame-
ter tuning of our classifier along with the importance of the selected

features. Moreover, the evaluation of our approach demonstrated
the increased classification performance and the way the temporal
size of the trajectory affects the classification accuracy. Finally, a
comparison between four classifiers was made on the same set
of features, demonstrating that, in our case, decision-tree based
classifiers yield a better classification performance.

As a future work, we intend to extend our methodology to cover
more fishing activities, by incorporating more features to our clas-
sifier. Furthermore, to support more fishing activities, more classi-
fication schemes will be investigated and tested, in terms of their
classification performance. Finally, we aim at developing a method-
ology which will retrain the suggested classifier online with the
use of newly received data.
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