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ABSTRACT
Existing approaches to dynamic scaling of streaming applications
often fail to incorporate uncertainty arising from performance vari-
ability of shared computing infrastructures, and rapid changes in
offered load. We explore the definition and incorporation of risk
and uncertainty, and advocate for risk-adjusted measures of per-
formance and their application in improving the robustness of
autonomic scaling of streaming systems.

CCS CONCEPTS
• Information systems → Data streaming; • Computer sys-
tems organization→ Self-organizing autonomic computing;
Real-time systems; • General and reference→ Performance.
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1 INTRODUCTION
Stream processing engines are a common execution platform for a
variety of contemporary data-centre applications. A minor degrada-
tion in application performance can have a high penalty on cloud
operators: Google reported 20% revenue loss, when an experiment
caused an additional delay of 500 ms in response time. Amazon re-
ported 1% sales decrease for an additional delay of 100 ms in search
results. The impact of performance degradation is exacerbated in
delay-sensitive applications e.g. streaming healthcare analytics.

Performance variability arises from rapid changes in offered
load, workload skew [12] and performance interference observed
when running atop public cloud infrastructures. State-of-the-art
scaling controllers fail to model these interactions, instead making
strong assumptions (e.g. linearity of performance under scaling)
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which compromise their effectiveness. We advocate for approaches
capable of making robust operating decisions under uncertainty.

We outline key challenges in the autonomic scaling of streaming
systems, through ‘case studies’ drawing analogies from financial
markets. Primarily we investigate methods to account for ‘idiosyn-
cratic’ risks as the direct result of one’s decision-making versus ‘sys-
tematic’ risks which originate outside of one’s control.

Financial investment portfolio managers are faced daily with the
need to identify, quantify and manage or mitigate the risks inherent
in large, complex portfolios of assets. The need for a clear under-
standing of the associated risks is paramount; numerous models,
methods and approaches have been developed over the past few
decades, ranging from Modern Portfolio Theory [23], to the Credit
Derivative risk models employed by large banks in the post Global
Financial Crisis environment (with the failure of the Gaussian cop-
ula models used in the preceding period showing the potential
downside of reliance on incorrect/unstable models [11]). We aim to
adopt methods from this field and apply them to risk identification,
quantification and mitigation in the stream processing arena.

Systematic trading strategy practitioners also face the problem
of how to develop, optimise and evaluate new trading strategies.
Evaluation of a live trading history, while far from being a simple
procedure, is often less susceptible to misdiagnoses and Type I/II
errors than a historical back-test of a proposed strategy. Algorithm
design and historic back-tested (i.e. simulated) results evaluation
must be carried out in such a manner as to avoid biases or curve-
fitting. Optimisation attempts must also be able to account for
numerous input parameters to be optimised, along with producing
a robust and reliable result in an acceptable time-frame and display
an acceptably low out-of-sample performance degradation [5].

2 REPORTING & MEASUREMENT METRICS
Problem: With streaming systems, performance is often measured
and recorded in a manner that fails to incorporate the notion of
sensitivity or robustness to changing input parameters or operating
environment [19]. Nor do we often find performance metrics that
factor in the maximum downside experienced throughout the test
(e.g. incorporating such a notion as some form of denominator with
which we transform the performance metric into a risk-adjusted
format). Also, seldomly are results gauged or compared versus the
notion of what one would hope to expect from a certain set-up
configuration choice, or specific system environment.

State of the art: Streaming systems are typically evaluated on
throughput and latency [20]. Other metrics have been proposed
such as correctness, the capacity of adapting to stream load vari-
ations and uncertainty or fuzzy patterns compliance [24], along
with memory consumption, maximum peak and post-peak latency
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variation ratio [25]. Bordin [9] identified the most frequently used
metrics; latency, throughput, scalability, tuple loss, and resource
usage. These metrics are framed as absolutes with no notion of
accompanying adjustment for risks inherent in the specific deploy-
ment. It also should be ensured that any instrumentation used to
record any relevant metrics or measurements does not itself perturb
or alter the normal operation of the system under evaluation [26].

Proposed approach: In finance the usual approach to ranking
or selecting investments and asset purchases when following a mo-
mentum strategy has relied on evaluating the proposed assets’ in-
dividual monthly returns over the ranking period. This realised
cumulative return as a selection criterion is a simple measure which
does not include the risk component of the asset behaviour. The
fact that momentum strategies are far from risk-less, in addition to
empirical evidence showing that individual asset returns exhibit
non-normality, suggests it would be more reliable to use a measure
that could account for these properties, such as the Sharpe ratio [2].

While a risk-adjusted measure of performance leads to superior
ranking results, any metric will contain some estimation error itself
which can play an important role in optimal portfolio choice [18,
27, 36]. Analytical results for the approximate bias and variance
of the sample Sharpe ratio in terms of the underlying distribution
parameters [6] may alleviate the problems of estimation risk.

I propose to adapt the principles behind several risk-adjusted
return metrics used in the financial investment and trading do-
main and apply them to generating accurate and representative
performance metrics for distributed data stream processing sys-
tems. Generally, three main metrics are used to measure portfolio
risk-adjusted performance in a financial setting:

• Sharpe Ratio: excess return, per unit of standard deviation.
• Treynor Ratio: return, per unit of systematic risk.
• Jensen’s Alpha: return over its expected return.

The three metrics are based on the same foundational concepts,
but each differ in how the investor frames their paradigm of risk
which is used as the denominator to transform the measure into a
risk-adjusted value [15]. The Sharpe Ratio uses total risk (both id-
iosyncratic and systematic) as the denominator, while the Treynor
includes only systematic risk. Mapped to the streaming context,
this is analogous to including only risks that are outside of the
streaming system operators’ influence and control versus including
risks that are a direct result of their actions.

We propose to generate a range of performance metrics which
have been transformed into risk-adjusted measures through the
use of downside or cost/risk metrics as normalisation parameters
(e.g. throughput, memory consumption, latency, system-failure in-
stances, load-shedding). This may allowmuchmore meaningful and
accurate comparisons between streaming systems which display
relatively dissimilar characteristics or topologies.

3 SYSTEM OPTIMISATION & RE-BALANCING
Problem: Streaming system parameter optimisation is highly non-
trivial, displaying a non-convex, irregular solution space [33]. This
challenge is exacerbated by the need to react in near real time,
and to maintain pre-agreed service quality metrics. Lorido-Botrán

et al. [22] identify several issues faced by an auto-scaler; Under-
provisioning, Over-provisioning, and Oscillation. The matter is com-
plicated further due to workloads and modern shared cluster envi-
ronments exhibiting high variability and unpredictability.

State of the art: Despite extensive research, current stream pro-
cessing engines lack the ability to automatically grow and shrink
to meet the needs of streaming applications; this includes Apache
Storm and Heron, Apache Flink and Spark Streaming [1]. There
have been numerousmodels and approaches developed to auto-tune
distributed stream processing systems including threshold-based
policies [30], reinforcement learning [35] and supervised learning
models [14]. Several techniques are often applied to assist in model
development, among them enhanced configuration sampling, met-
ric dimensionality reduction and machine learning for both system
configuration optimisation and for workload prediction [35].

Fischer et al. [13] found that using Bayesian Optimisation ap-
proaches resulted in significant gains over a parallel linear approach.
Bilal and Canini [8] developed a hill-climbing algorithm that ac-
counts for desirable initial configurations of stream processing
applications along with a novel gray-box optimization algorithm
based on a rule-based heuristic approach that provides comparable
results while being two to five times faster

Muchwork has been carried out in the closely related area of QoS-
aware service composition, the purpose of which is the selection of
the best set of services to compose, meeting global QoS constraints
imposed by the user [7]. All approaches to this problem to date have
made a number of simplifying assumptions as the problem is known
to be NP-hard [32] and can be modelled as a multidimensional,
multi-objective, multi-choice knapsack problem (MMMKP) [16].

DS2 [17], offers an auto-scaler which leverages knowledge of
the dataflow graph, the computational dependencies among op-
erators, and estimates the operators’ true processing and output
rates. However it only targets workload changes on a timescale
greater than its own convergence time; if too short it relies on us-
ing back-pressure, buffering or load shedding to generate the signals.
This leads to a more stable result than dynamic scaling at a cost
of increased latency or lost data as scaling too often over short
horizons results in inefficient fluctuations. We propose that any
scaling decision made based on fluctuations of current environment
variables which prove to be of a relatively small magnitude may
also lead to similar sub-optimal changes and therefore performance.

Proposed approach: Our approach will frame the topic as two
distinct, but inter-related problems; when we scale the system, and
what the scaler chooses as the new system configuration.

In finance, portfolios can be re-balanced using the percentage
of portfolio re-balancing approach whereby actions are triggered
by changes in relative asset values, i.e. whenever any asset class
moves far enough away from its optimal weight [29]. Tolerance
bands are used to strike a balance between the adverse effects of
allowing an allocation to stray too far from its optimal and the
execution costs incurred through frequent re-balancing actions.
Several factors impact the width of a tolerance band:

• Transaction costs (+ , risk ↑ , band width ↑)
• Risk tolerance (+ , risk ↑ , band width ↑)
• Correlation of asset returns (+ , risk ↑ , band width ↑)
• Volatility of the asset (− , risk ↑ , band width ↓)
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• Volatility of other portfolio assets (− , risk ↑ , band width ↓)
Different re-balancing strategies tend to perform better in differ-

ent market regimes, whether trending (up or down), or oscillating.
The inefficient fluctuations in streaming systems can be seen

as analogous to re-balancing a portfolio of financial assets before
the tolerance band has been breached. The asset weights would
be analogous to the magnitude of latency, load shedding, system
downtime, or other specified cost/risk. These can be considered
in terms of their relative position within the overall portfolio that
makes up our operating environment. The width of a tolerance
band in the instance of a streaming system would be influenced by:

• Individual cost/risk tolerance (+ , risk ↑ , band width ↑)
• Correlation between costs/risks (+ , risk ↑ , band width ↑)
• Volatility of the costs/risks (− , risk ↑ , band width ↓)
• Volatility of other costs/risks (− , risk ↑ , band width ↓)

We propose to quantify the leading constituent cost/risk factors
and incorporate the concept of tolerance bands into the scaling deci-
sion process. This may allow a reduction in scaling decisions being
enacted which result in an inefficient fluctuation when considering
the benefit gained versus the costs incurred.

Once the auto-scaler has decided to enact a scaling or re-balancing
of the system, it is necessary to identify a set of new system config-
uration and parameter values to implement. These new parameters
should represent what our model perceives as the optimal configu-
ration, and need to be calculated and produced in near real-time.

In optimising algorithmic trading strategy parameters or finan-
cial asset portfolio constituents, key problems relate to the sensitiv-
ity to small parameter value changes and numerous local extrema,
distributed over the solution space in an irregular way. Certain
methods were designed to significantly reduce optimisation compu-
tation time, without a substantial loss of strategy quality. These in-
clude Differential Evolution and Genetic Algorithms, which join the
exploitation of past results with exploration of the search space [10].

Differential evolution has been shown to outperform genetic
algorithms for numerical multi-objective optimisation [34]. Differ-
ential Evolution [31] was proposed for solving problems with an
irregular solution space; it was shown to successfully minimise
Conditional Value at Risk (CVaR) for large-scale portfolios [3].

Streaming systems can vary significantly across varying use
cases, and domains of application. Characteristics include the com-
plexity of the computation, the volume and volatility of the incom-
ing data stream, along considerations of the system provider, such
as meeting service level agreements. It is not unusual to find that
a system’s quantity of variables that need to be optimised grows
relatively large, often each with a relatively large possible range
of values, creating an unmanageable number of permutations to
test across using a simple brute force approach; this is where the
development of an optimisation model and process that allows the
computation time to be dramatically reduced without experiencing
a corresponding degradation in performance is highly desired.

Our efforts will attempt to improve on current state-of-the-art
optimisation models, balancing the trade-off between computa-
tional cost, robustness and performance of the resulting optimised
model. Initial efforts will focus on Genetic Algorithms and Differ-
ential Evolution approaches and will aim to successfully manage
the exploration versus exploitation trade-off.

4 STRESS TESTING & SCENARIO ANALYSIS
Problem: It is important for operators to have confidence in how
their proposed system is expected to perform under differing situa-
tions and operating environments. Operators must be cognisant of
the implications of a wide range of possible eventualities ranging
from probable but low-impact to improbable but severe situations.

State of the art: Previous works investigate stress testing and
scenario analysis on streaming systems [4]. Recent approaches
explore coordinated failure scenarios which propagate across a
streaming system [26]. Attempts have been made to identify and
categorise testing methods, focusing on varying areas and char-
acteristics of potential sources or points of system weakness [21].
Three criteria are often used to evaluate fault-injection approaches;
representativeness, usability and efficiency [28].

Proposed approach: Enterprise stress testing, reverse stress test-
ing and scenario analysis, the process whereby banks assess their
financial resilience to macro-economic or market-driven scenarios,
has changed over the last decade or so from what used to be a
simple, top-down process into a complex, bottom-up modelling
exercise, involving almost every function within the bank.

Even at the individual financial asset portfolio level, equity, fixed-
income, and options positions can be characterised by a number
of exposure measures that reflect the sensitivities of these posi-
tions to movements in underlying risk factors. Sensitivity measures
examine how performance responds to a single change in an un-
derlying risk factor. Understanding and measuring how portfolio
positions respond to the underlying sources of risk is a primary
objective in managing this risk. A scenario risk measure estimates
the portfolio return that would result from a hypothetical change in
markets (a hypothetical scenario) or a repeat of an historical event
(a historical scenario). One of the major areas of benefit that results
from carrying out these tests and scenarios is in the identification
and quantification of how individual assets in a portfolio respond
to various stresses and events. Moreover, it also reveals how one
may expect assets to respond to these shocks, in relation to the
other assets held. This can then be used to explore and measure a
comprehensive range of more nuanced and focused interactions
and metrics such asMarginal VaR and Conditional VaR of individual
assets. These measure the additional risk added to your portfolio by
adding $1 worth of the asset in question (MVaR), whereas the CVaR
measures the proportion of overall risk which can be attributed to
an individual asset’s entire allocation.

We propose the development of a framework which aids rele-
vant parties to gauge not only the magnitude of risk inherent to
their system design choices, but also understand their exposure to
certain events or environment changes. Attempts will be made to
incorporate what are deemed to be the most important collection
of factors, much in the same way financial models concentrate on
capturing the major proportion of causality while making a num-
ber of conscious design choices to avoid unnecessary complexity.
Table 1 maps financial risk categories onto the streaming domain.

The model will adopt both parametric and Monte Carlo methods
to allow more accurate quantification of the magnitude of risk
exposures. It will also capture differing rates of change caused
by the interaction of non-linear relationships (much like financial
options contracts display non-linear payout structures).
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Table 1: Mapping of financial risk to streaming applications

Financial Risk Description Streaming Risk Map

Market risk The risk of losses caused by adverse price movements Concept drift and volatility shifts in input stream/arrival rates

Credit risk The risk of a loss resulting from a borrower’s failure
to repay a loan or meet contractual obligations

A company’s risk of a loss resulting from a 3rd party’s failure to remain
solvent and a “going concern”

Liquidity risk The risk that a company or bank may be unable to
meet short term financial demands

The risk that a company may face a lack of access to urgently needed
resources in sufficient quantities

Counter-party risk The risk that one of those involved in a transaction
might default on its contractual obligation

The risk resulting from the effects as a direct result of reliance on a 3rd
party which experiences a negative event

Model or Estimation risk
The risk that a financial model used tomeasure quanti-
tative information and affects the outcome of financial
securities valuations fails or performs inadequately

The risk that a model used to optimise stream processing system pa-
rameters or calculate/interpret metrics fails or performs inadequately

Operational risk The risk arising from inadequate or failed internal
processes, people and systems, or from external events

The risk arising from the failure or incorrect management of systems
and processes considered external or exogenous to the streaming engine

5 CONCLUSIONS & FUTUREWORK
We have explored several opportunities where risk and uncertainty
can be incorporated into dynamic scaling decisions in streaming
systems. Through participation in the Doctoral Symposium, we
seek feedback from the community to develop our research ideas
further, and to stimulate ongoing collaboration.
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