
Industry Paper: On the Performance of Commodity Hardware
for Low Latency and Low Jitter Packet Processing

Charalampos Stylianopoulos, Magnus Almgren
Olaf Landsiedel, Marina Papatriantafilou

Chalmers University of Technology
Gothenburg, Sweden

{chasty,magnus.almgren,olafl,ptrianta}@chalmers.se

Trevor Neish, Linus Gillander
Bengt Johansson, Staffan Bonnier

Ericsson
Gothenburg, Sweden

{trevor.neish,linus.gillander}.ericsson.com
{staffan.bonnier,bengt.e.johansson}.ericsson.com

ABSTRACT
With the introduction of Virtual Network Functions (VNF), network
processing is no longer done solely on special purpose hardware.
Instead, deploying network functions on commodity servers in-
creases flexibility and has been proven effective for many network
applications. However, new industrial applications and the Internet
of Things (IoT) call for event-based systems and midleware that can
deliver ultra-low and predictable latency, which present a challenge
for the packet processing infrastructure they are deployed on.

In this industry experience paper, we take a hands-on look on
the performance of network functions on commodity servers to de-
termine the feasibility of using them in existing and future latency-
critical event-based applications. We identify sources of significant
latency (delays in packet processing and forwarding) and jitter
(variation in latency) and we propose application- and system-
level improvements for removing or keeping them within required
limits. Our results show that network functions that are highly
optimized for throughput perform sub-optimally under the very
different requirements set by latency-critical applications, com-
pared to latency-optimized versions that have up to 9.8X lower
latency. We also show that hardware-aware, system-level configu-
rations, such as disabling frequency scaling technologies, greatly
reduce jitter by up 2.4X and lead to more predictable latency.

CCS CONCEPTS
• Networks→ Network measurement.

KEYWORDS
packet processing, latency, jitter, Industry 4.0
ACM Reference Format:
Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, Marina Pa-
patriantafilou, Trevor Neish, Linus Gillander, and Bengt Johansson, Staffan
Bonnier. 2020. Industry Paper: On the Performance of Commodity Hard-
ware for Low Latency and Low Jitter Packet Processing. In The 14th ACM

Olaf Landsiedel is also with Kiel University, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3403591

International Conference on Distributed and Event-based Systems (DEBS ’20),
July 13–17, 2020, Virtual Event, QC, Canada. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3401025.3403591

1 INTRODUCTION
High-speed networks are a key part of today’s connected world.
As the number of connected devices increases [7] and new event-
based applications with strict performance requirements (e.g., those
related to Industry 4.0 [10] that combines factory automation with
communication technologies) become common, next-generation
networks face new challenges with respect to scaling and meeting
those requirements. In particular, in network architectures, the user-
plane1 [13] i.e. the component that is responsible for carrying and
processing network traffic, needs to support reliable connectivity
with minimum added delays (latency).

Over the last years, network technologies have shifted from
specialized hardware platforms to a user-plane that can be deployed
on commodity, off-the-shelf hardware, either natively or using
virtualization and container technologies [19]. This shift allows
flexibility in the design and deployment of network functions to
support a variety of event-driven applications, reduces deployment
cost and enables horizontal scaling. It also allows the deployment of
Virtual Network Functions (VNF) where packet processing such as
switching, firewalls and intrusion detection systems, is decoupled
from the hardware that it is deployed on.

While the aforementioned shift to commodity hardware and VNF
has been proven successful, e.g., for mobile broadband applications,
such network technologies have not yet been put to use in more
demanding applications such as Industry 4.0. In particular, one of
the requirements of such applications is low latency. In upcoming
event-based industrial applications, such as factory automation,
machine-to-machine communication and autonomous driving, the
network infrastructure is required to deliver low end-to-end la-
tency (less than 10ms in some cases). Another, often overlooked
requirement is that variation in latency (jitter) must be kept to a
minimum. High jitter might lead to interruptions in service, e.g.,
in an automated production line where co-operating machinery
might experience differences in latency and desynchronize.

The challenge to meet these requirements is particularly press-
ing for mobile networks that will play a central role in future In-
dustry 4.0 deployments. In particular, the evolution of the core
packet processing network, i.e. Evolved Packet Core (EPC) [17],

1The term data-plane is also used in the literature, we use the term user-plane through-
out the paper.

177

https://doi.org/10.1145/3401025.3403591
https://doi.org/10.1145/3401025.3403591

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Stylianopoulos et al.

needs to enable future mobile networks to meet the required per-
formance.The packet processing involved in the user-plane of EPC
involves many event-based network functions such as Deep Packet
Inspection [22] and firewalls, but the bare minimum functionality
is packet switching, which we focus on in this paper.

When considering software-based packet processing in general
purpose servers, there are several factors that can contribute to high
latency. They range from operating system interrupts or scheduling
and timesharing with other tasks. Moreover, the packet processing
application itself needs to be optimized to make best use of the un-
derlying hardware [23] and focus on delivering low latency. Hence,
the performance and feasibility of using commodity hardware for
latency-critical event-based applications is still an open issue.

In this industrial experience report, we establish a baseline for the
latency and jitter performance of software-based packet processing
on commodity hardware. Our goal is to determine the feasibility
of using software-based packet processing on commodity hard-
ware for challenging and latency-critical event-based applications
in Industry 4.0. As a starting point, we focus on the bare mini-
mum functionality that the user-plane performs, namely packet
forwarding. We design and perform experiments to identify sources
of unnecessary latency and jitter and we propose ways to remove
them, through optimizations in the application itself and at system
level. Specifically, our evaluation shows that:
• In order to come close to the reliable and low latency network
requirements of event-based applications, packet processingmust
be optimized to avoid buffering packets as much as possible, even
if that comes at the cost of a reduced sustained throughput.

• System-level, hardware-aware configurations, such as disabling
frequency scaling, can have a noticeable effect on latency and
jitter.
The rest of the paper is organized as follows. Section 2 gives the

required background on low-latency packet processing. In Section 3
we identify sources of latency and jitter and show how to mitigate
them. We present our experimental methodology in Section 4 and
the results from the experiments in Section 5. We discuss those
results in connection with application requirements in Section 6.
We present related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES
In this section, we summarize relevant information on the require-
ments of Industry 4.0 applications, the packet processing involved
in the packet core, as well as a brief background on user-space
networking.

2.1 Ultra Reliable Low Latency
Communication Requirements

Ultra Reliable Low Latency Communication (URLLC) is a collec-
tion of services supported by the upcoming fifth generation net-
works (5G), designed to address the needs of latency-critical event-
based applications, mainly related to machine-to-machine commu-
nication and industrial applications [20].

The basic requirements and characteristics of URLLC services
that relate to the network infrastructure they are deployed on are
the following: (a) Low latency. While there is a plethora of studies
mentioning different latency requirements for the same application,

typical latency requirements range from 1 msec to 50 msec end-
to-end latency. Note that this requirement is about the maximum
guaranteed latency and not the average. (b) High reliability. Most
use cases require a highly reliable network infrastructure that must
deliver packets with 99.99% to 99.999% reliability. (c) Low jitter. On
many industrial applications, jitter (variations in latency) can cause
disruptions in service, even if the latency itself remains within the
acceptable bounds. (d) Low traffic rates. Fortunately, in most cases,
the traffic generated by industrial event-based applications is not
both latency- and throughput-critical. Typical use cases generate
roughly 50 Mbps or less, which is a very low traffic rate for modern
networks.

2.2 The Evolved Packet Core
The Evolved Packet Core (EPC) is the core network of Long Term
Evolution (LTE) that supports mobile broadband in current mo-
bile telecommunication standards (4G) [17]. It consists of different
network functions, such as mobility management, quality of ser-
vice and lookup of subscription information [4]. The user-plane of
EPC is responsible for processing packets between the nodes of the
EPC and for connecting them with external networks. The user-
plane includes many functions such as firewalls and deep packet
inspection, but it is primarily responsible for packet forwarding
(switching) [13]. That is the network function that we focus on in
this paper.

2.3 User-space packet processing
Traditionally, software-based packet processing uses the kernel’s
network stack to send and receive packets. However, relying on
the kernel for packet I/O involves issuing an interrupt every time
there is a new packet to be received from the network card, which
introduces overheads. Even though newer kernel versions reduce
the number of interrupts generated [21], kernel-based networking
cannot match the processing speed needed by high performance
networks.

In the last few years, user-space solutions for packet processing
have become popular, with the Data Plane Development Kit (DPDK)
being the most common packet I/O framework [2]. In DPDK, pack-
ets that are received from the network card are sent directly to
memory that is mapped to user-space. DPDK’s driver keeps polling
the memory for new packets, instead of waiting for an interrupt to
be issued. Additionally, DPDK’s library includes support for fast
packet processing across many cores and heavily relies on batch-
ing multiple packets to amortize the per-packet processing cost,
making it the de-facto choice for high speed networks.

3 LATENCY AND JITTER
In this section, we identify sources of latency and jitter in the
context of packet processing on commodity hardware and propose
methods to mitigate their effects.

Commodity hardware platforms are generally not designed for
low latency and real-time processing. As a result, there are many
sources of latency, stemming from, e.g., the scheduler, the oper-
ating system or packet processing application itself. While there
are many suggestions on how to improve the real-time character-
istics of commodity systems [16], we focus on specific parts and

178

Industry Paper: Commodity Hardware for Low Latency and Low Jitter Packet Processing DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

measure their effects. Specifically, we target latency and jitter due
to: (a) the packet I/O framework and forwarding application and
(b) the operating system and the hardware platform itself.

3.1 Packet I/O and forwarding application
Choice of Packet I/O: As previously mentioned in Section 2,
kernel-based packet processing introduces overheads. For this rea-
son we use a user-space packet I/O framework (DPDK) and its
own simple packet switching application (Layer 2 packet forward-
ing). We compare its performance with the traditional kernel-based
packet I/O (NAPI [21]) using Linux bridge [24] for packet switching.

Note that DPDK is designed with high throughput as the primary
goal. While the vast majority of that increased throughput comes
from reducing the per-packet processing latency, DPDK’s design
is not necessarily oriented towards maintaining a low per-packet
maximum latency. In fact, as we discuss next and experimentally
show in Section 5, the per-packet latency can be high under low
load, due to buffering.

Low Traffic Rate + Buffering = High Latency: For the DPDK
version, as a staring point, we use the Layer 2 forwarding example
application provided by DPDK’s library, that simply forwards pack-
ets from one port to another. By default, the Layer 2 forwarding
application will receive and buffer up to 32 packets before send-
ing them to the outgoing port as a single batch. This reduces the
number of times the application communicates with the network
card and helps sustain a high processing rate when the incoming
packet rate is high. However, buffering can severely impact latency
at low traffic rates. Recall from Section 2 that URLLC applications
usually have low traffic rates, so maintaining low latency under
such conditions is critical. When the input rate is low, there is a
significant delay until the buffer is full of packets and can be sent to
the network card which causes: (a) high latency on the first packet
that is buffered, since it has to wait for 31 more packets to arrive and
be processed and (b) high variation in latency, due to the difference
in waiting time between the first packet that gets buffered and the
last one before the buffer is flushed. This effect on DPDK’s Layer 2
forwarding application has been reported by Kawashima et al. [11].

Since our target applications require very low latency at low
traffic rates, we mitigate the effects of buffering and sacrifice the
performance at high traffic rates for low and consistent latency
at low rates (in Section 6 we quantify experimentally how much
throughput gets sacrificed). We set the size of the buffer to one
packet to send every received packet to the outgoing port as soon
as it is received. An alternative approach would be to set a timer that
will flush the packet buffer at fixed intervals. We choose to disable
buffering in order to come as close as possible to the lowest possible
latency that we can achieve.We study the effect that disabling buffer
has in latency and jitter in Section 5.

3.2 Operating System and Hardware Platform
We next identify and tackle sources of latency and jitter that come
from the operating system and its interaction with the hardware
platform. The goal is to ensure (to the extent that it is possible) that
the user-space application handling the packet processing does not
get any interruptions in its service.

Software
Switch

Server A

Server B

Hardware
Switch=

= Network
Card

MoonGen Packet
Generator

Figure 1: The experimental setup.

Nadathur et al. [16] suggest multiple kernel options that can
contribute to lower and more stable latency, including real-time
kernel patches specifically for this purpose. We follow several of
these considerations and introduce additional ones. Specifically:
• Thread isolation:We isolate the cores that are used by DPDK
from the kernel scheduler, to ensure that no other task will time-
share or use resources from those cores.

• Disable interrupt balancing:We disable the daemon that dy-
namically distributes interrupts to cores, to avoid handling unre-
lated interrupts by the cores running DPDK.

• Disable turbo-boost: Turbo-boost is a technology used in Intel
CPUs that allows scaling the frequency of a core dynamically
during peak loads, even beyond the nominal values, if the power
and temperature budget allows [9]. We find (and experimentally
show in Section 5) that on some platforms, enabling turbo boost
causes high variation in packet processing latency, possibly due
to interruptions in processing involved when the CPU frequency
changes.

4 EXPERIMENTAL METHODOLOGY
In this section, we present our experimental methodology. We de-
scribe the hardware platform used in our experiments, the network
topology and the way test traffic is generated. We also present the
metrics that are relevant in our evaluation.

Hardware Platform: We use servers and network infrastruc-
ture from CloudLab [3], a platform that allows bare metal access to
a wide range of hardware devices. A summary of our experimental
setup is shown in Figure 1. Each of the two servers is a 20-core
NUMA platform with Xeon E5 at 2.26 Ghz that supports 2-way
hyperthreading. Each server has two Intel 82599ES 10 Gb Ether-
net network cards, connected to each other as shown in Figure 1,
through an internal network of hardware switches. Each server
also has 1Gb Ethernet card connected to the external network for
control over the servers (not shown in Figure 1).

While it is currently not possible to connect the servers directly,
we performed a loop-back test to establish a baseline on the latency
introduced by the hardware switches. Our measurements showed
an average latency of 1.1 𝜇sec and 0.1 𝜇sec difference between
maximum and minimum latency per switch (these measurements

179

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Stylianopoulos et al.

0 20 40 60 80 100 120

Latency (µsec)

0

5000

10000

15000

20000

25000

N
um

be
ro

fp
ac

ke
ts

Linux bridge
DPDK’s L2 forwarding
DPDK’s L2 forwarding (w/o buffering)

(a) Histogram of latency measurements using different packet processing versions.
The spike at 5.7 𝜇sec corresponds to the version that does not use buffering and has
too low variation in latency to be clearly visible.

Linux DPDK DPDK
bridge (w/o buffering)

Average 16.8 56.1 5.7latency (𝜇sec)
Minimum 7.8 6.2 5.5latency (𝜇sec)
Maximum 45.0 117.0 17.8latency (𝜇sec)
Deviation 3.1 28.5 0.6(𝜇sec)

(b) Latency statistics for different packet processing
versions.

Figure 2: Histogram and latency statistics for packet processing of different versions. Different versions have significant dif-
ferences in both the average and the general distribution of latency.

include any overhead added from the packet generation software,
which we describe next).

Traffic Characteristics and Generation: We use the Moon-
Gen packet generator [5] to send traffic and measure latency and
jitter. MoonGen uses DPDK to send and receive traffic and supports
measurements with 100 nsec precision. Unless otherwise noted, we
generate a low, constant load of 64 byte UDP packets at 100 Kpack-
ets/sec and we measure latency every 1ms. We generate traffic
in platform A, send it to platform B where the software switch
application forwards it to a different port that is connected back
to platform A. Latency is measured using hardware timestamps
generated at the network cards.

Metrics: We use latency, reported as the round-trip-time of
packets from the moment they leave the network card at server
A until they return. We report jitter as the absolute difference in
latency between two successive measurement samples [18]. Finally,
we also report throughput as the rate at which we send traffic to
the network at server A.

5 EMPIRICAL STUDY
In this section, we present the results from our experiments and
show the effect of our mitigation techniques on latency and jitter.

5.1 Packet I/O framework
We start by studying the effect that the choice of the packet I/O
framework has on latency. In Figure 2a we show the latency when
using kernel-based packet processing (linux-bridge) versus user-
space packet processing (DPDK). We include the latency statistics
in the table of Figure 2 for completeness. The latency samples for
the linux bridge are spread around an average of 16.8 𝜇sec, with
a minimum and maximum latency of 7.8 and 45 𝜇sec respectively.
On the other hand, the latency measurements of DPDK’s original
layer 2 forwarding application are evenly spread between 6.2 and
117 𝜇sec, with an average of 65 𝜇sec. This even spread is clearly an
effect of buffering, where the latency of a packet depends greatly on
how early or late it was placed on the buffer. As a result, we see that

the original DPDK version of packet forwarding is not designed to
perform well with respect to latency at low traffic rates.

In summary: Using a high-performance, user-space I/O frame-
work does not, on its own, guarantee low latency at low traffic rates.
Next, we show the effect of buffer-removal on latency.

5.2 Application Layer Optimizations
We now present the latency measurements of a modified version of
DPDK’s L2 forwarding application where packets are sent directly
to the outgoing interface after they are received. We include those
results in Figure 2a to compare against the other versions, espe-
cially against the version that uses buffering. By disabling packet
buffering, the latency of most packets is concentrated at around
5.7 𝜇sec, which is 9.8X lower than than the original version that
buffers packets. However, the maximum reported latency was 17.8
𝜇sec, which means that there are still sources of spurious latency
spikes, that originate from the underlying hardware and operating
system. We discuss their effect and mitigation next.

In summary: Disabling packet buffering in packet forwarding
applications is necessary to achieve low latency when the traffic
rate is low.

5.3 System Layer Configurations
After optimizing the application for low latency, we now focus on
the system level configurations and their effect on latency. Figure 3a
shows a different representation of the latency of DPDK’s L2 for-
warding version that does not use any buffering, where we plot all
the latency samples gathered during our experiments. We see that
the vast majority of samples have latency around the average of 5.7
𝜇sec, but there are spurious increases in latency that range up to
18 𝜇sec, indicating that latency increases unpredictably during the
execution of our experiments. We also report jitter in the table of
Figure 3. The average jitter is 0.17 𝜇sec with a maximum reported
jitter of 12.52 𝜇sec.

In Figure 3b, we show the net effect of applying the system con-
figurations presented in Section 3. The effect of those configurations

180

Industry Paper: Commodity Hardware for Low Latency and Low Jitter Packet Processing DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

(a) Latency samples before system level configura-
tions.

(b) Latency samples after system level configura-
tions.

Before After
changes changes

Average 0.17 0.07jitter (𝜇sec)
Maximum 12.52 4.80jitter (𝜇sec)
Deviation 0.88 0.10(𝜇sec)

(c) Jitter statistics before and after
system level configurations.

Figure 3: The effects of system level optimizations on latency. The system level configurations lead tomore predictable latency
that is concentrated around the average values and has less deviation than before applying the changes.

is immediately noticeable in this representation, where the vast
majority of spurious increases in latency have been mitigated. The
average reported jitter is 0.07 𝜇sec, which is 2.4X lower than before
applying the system level configurations. Performing longer runs,
we find that the maximum latency is not affected (our maximum
reported latency was 20 𝜇sec), but latency is much more predictable
and concentrated around the average.

In summary: System layer configurations such as thread isolation
and disabling turbo boost significantly reduce jitter.

5.4 Latency vs Throughput
The mitigation techniques we introduced in Section 3 and evaluated
so far focus on minimizing latency at low traffic rates. However,
they come at a cost: the maximum sustained packet processing rate
is reduced.

In Figure 4 we report the average and maximum latency of
both the original (throughput-optimized) and the latency-optimized
packet forwarding DPDK application as we increase the rate at
which we generate traffic. When the traffic rate is low, the original
version that focuses on throughput has high average and maximum
latency, since it takes long for the packet buffer to fill. As the traffic
rate increases, the effect of buffering on latency decreases and this
version maintains a low latency at high rates. In fact, the original
DPDK L2 forwarding application can easily support the maximum
available bandwidth at the link (10 Gbps). The version that does
not do any buffering has low latency at low traffic rates, which
gradually increases with the traffic rates, until roughly 4.3 Gbps.
After that point, this version cannot process packets at the same
rate as they arrive. As a result the packet queues start to fill, latency
increases and we start to see packets being dropped. However, as
we discuss in Section 2.1, it is the low-throughput end (often less
than 50Mbps) that is relevant for URLLC applications. At those low
rates, our latency mitigation techniques manage to keep the latency
an order of magnitude lower than what it originally was.

6 DISCUSSION
The requirements of the URLLC on latency and jitter presented
in Section 2, relate to the end-to-end application requirements
and include the overhead of many components of the network,
including wireless communication with the base station. As such,

0 1000 2000 3000 4000 5000

Throughput (Mbps)

0

20

40

60

80

100

120

La
te

nc
y

(µ
se

c)

Latency optimized (average)
Latency optimized (max)
Throughput optimized (average)
Throughput optimized (max)

Figure 4: Average and maximum latency at different packet
transmission rates. The latency-optimized version cannot
sustain the incoming packets rates after roughly 4.3 Gbps.

for an application with e.g. a 10ms latency requirement budget, only
a small part of that budget can be allocated to the user-plane of the
packet core and specifically to packet switching. However, it is hard
to judge exactly how much the target latency for packet switching
alone would be. In our experiments, the maximum reported latency
was 20 𝜇sec, which is likely to be sufficiently low for most industrial
applications. However, since we examine only a small part of the
network stack involved, it is hard to form a clear picture of the
feasibility of deploying a network stack on commodity hardware
for latency critical applications. Moreover, as we demonstrated in
Section 5.4, our latency reduction techniques come at the cost of
lower sustainable throughput at high rates, but are a good fit for
URLLC applications that have low traffic rates.

7 RELATEDWORK
In this section, we present related work on the topic of evaluating
the packet processing performance of commodity hardware.

Emmerich et al. [6] perform extensive benchmarks using differ-
ent packet I/O frameworks and identify performance bottlenecks

181

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Stylianopoulos et al.

in hardware and software. Gallenmüller et al. [8] focus on the per-
formance of I/O frameworks and present an analytical model to
predict their performance. They also experiment with packet buffer-
ing and show its effect on latency, but only at high traffic rates.
Kawashima et al. [11] evaluate the performance of packet forward-
ing applications across many packet I/O frameworks and execution
environments, focusing on both throughput and latency. They also
identify that the original DPDK L2 forwarding application uses
buffering which negatively affects latency at low traffic rates.

A large body of research evaluates commodity hardware in the
context of NFV. Anderson et al. [1] evaluate packet I/O frameworks
in different environments, including virtual machines and contain-
ers. They provide results on latency and jitter, but do not use fast,
user-space I/O frameworks such as DPDK. Kourtis et al. [12] evalu-
ate the processing throughput of deep packet inspection applica-
tions with DPDK on both bare-metal and virtualized environments.

Focusing on mobile broadband networks, Lange et al. [14] eval-
uate the performance a Serving Gateway that involves both the
user-plane and control plane events, and show that user-space
networking based on DPDK can greatly improve the per-packet
processing time. Mao et al. [15] study the performance of a software-
based Radio Access Network under strict latency requirements and
show that light-weight virtualization with containers, together with
frameworks like DPDK can lead to worst-case latency that is within
the required bounds of latency-critical applications. Contrary to
those approaches, in this paper we show the trade-off between
latency and throughput, study the sources of latency and jitter and
show system and applications configurations that can reduce them.

8 CONCLUSIONS
In this paper, we consider the performance of packet processing
deployed on commodity hardware with respect to latency and jitter
and propose a baseline on the feasibility of such platforms for the
packet processing needs of Industry 4.0 applications. We identify
sources of latency and jitter in the packet processing application
as well as the underlying system and show ways to mitigate them.
Specifically, we show that optimizing applications for latency rather
than throughput (e.g. by disabling buffering of packets), greatly
reduces average latency by up to 9.8X, at low traffic rates, which is
important for event-based URLLC that usually have low volumes of
traffic but are sensitive to latency. Moreover, we show that system
level configurations, such as disabling dynamic frequency scaling
makes latency more predictable and reduces jitter.

ACKNOWLEDGEMENTS
The research leading to these results has been partially supported
by the Swedish Civil Contingencies Agency (MSB) through the
projects RICS and RIOT, by the Swedish Foundation for Strategic
Research (SSF) through the framework project FiC, by the Swedish
Research Council (VR) through the project ChaosNet and the project
AgreeOnIT, the Vinnova-funded project “KIDSAM”, and from the
European Community’s Horizon 2020 Framework Programme un-
der grant agreement 773717.

REFERENCES
[1] Jason Anderson, Hongxin Hu, Udit Agarwal, Craig Lowery, Hongda Li, and Amy

Apon. 2016. Performance considerations of network functions virtualization

using containers. In 2016 International Conference on Computing, Networking and
Communications (ICNC). 1–7. https://doi.org/10.1109/ICCNC.2016.7440668

[2] DPDK. 2019. Data Plane Development Kit. https://www.dpdk.org.
[3] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[4] Romaric Duvignau, Marina Papatriantafilou, Konstantinos Peratinos, Eric Nord-
ström, and Patrik Nyman. 2019. Continuous Distributed Monitoring in the
Evolved Packet Core. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems. 187–192.

[5] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Internet Measurement Conference 2015 (IMC’15). Tokyo, Japan.

[6] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2015. Assess-
ing soft-and hardware bottlenecks in PC-based packet forwarding systems. ICN
2015 (2015), 90.

[7] Ericsson. 2016. Internet of Things forecast. https://www.ericsson.com/en/
mobility-report/internet-of-things-forecast. Accessed: 2019-01-15.

[8] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. 2015. Comparison of frameworks for high-performance packet IO. In
2015 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS). IEEE, 29–38.

[9] Intel. 2019. Higher Performance When You Need It Most. https:
//www.intel.com/content/www/us/en/architecture-and-technology/turbo-
boost/turbo-boost-technology.html.

[10] Nasser Jazdi. 2014. Cyber physical systems in the context of Industry 4.0. In 2014
IEEE International Conference on Automation, Quality and Testing, Robotics. 1–4.
https://doi.org/10.1109/AQTR.2014.6857843

[11] Ryota Kawashima, Hiroki Nakayama, Tsunemasa Hayashi, and Hiroshi Matsuo.
2017. Evaluation of Forwarding Efficiency in NFV-Nodes Toward Predictable Ser-
vice Chain Performance. IEEE Transactions on Network and Service Management
14, 4 (Dec 2017), 920–933. https://doi.org/10.1109/TNSM.2017.2734560

[12] Michail Kourtis, George Xilouris, Vincenzo Riccobene, Michael Mcgrath,
Giuseppe Petralia, Harilaos Koumaras, Georgios Gardikis, and Fidel Liberal. 2015.
Enhancing VNF performance by exploiting SR-IOV and DPDK packet processing
acceleration. https://doi.org/10.1109/NFV-SDN.2015.7387409

[13] James Kurose and Keith Ross. 2016. Computer networks and the internet. Computer
networking: A Top-down approach. London: Pearson.

[14] Stanislav Lange, Anh Nguyen-Ngoc, Steffen Gebert, Thomas Zinner, Michael
Jarschel, Andreas Köpsel, Marc Sune, Daniel Raumer, Sebastian Gallenmüller,
Georg Carle, and Phuoc Tran-Gia. 2015. Performance benchmarking of a software-
based LTE SGW. In 2015 11th International Conference on Network and Service
Management (CNSM). 378–383. https://doi.org/10.1109/CNSM.2015.7367386

[15] Chen-Nien Mao, Mu-Han Huang, Satyajit Padhy, Shu-Ting Wang, Wu-Chun
Chung, Yeh-Ching Chung, and Cheng-Hsin Hsu. 2015. Minimizing Latency of
Real-Time Container Cloud for Software Radio Access Networks. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science (CloudCom).
611–616. https://doi.org/10.1109/CloudCom.2015.67

[16] Sundar Nadathur and Jiming Sun. 2018. NFV-I host configuration for
low latency. https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-
configuration-low-latency.

[17] Magnus Olsson, Catherine Mulligan, Shabnam Sultana, Stefan Rommer, and Lars
Frid. 2013. EPC and 4G packet networks: driving the mobile broadband revolution.
Academic Press.

[18] S Poretsky, J Perser, S Erramilli, and S Khurana. 2006. RFC 4689–Terminology for
Benchmarking Network-layer Traffic Control Mechanisms. IETF, October (2006).

[19] Ericsson Technology Review. 2019. Cloud-native application design in the tele-
com domain. https://www.ericsson.com/en/ericsson-technology-review/archive/
2019/cloud-native-application-design-in-the-telecom-domain.

[20] Joachim Sachs, Gustav Wikstrom, Torsten Dudda, Robert Baldemair, and Kit-
tipong Kittichokechai. 2018. 5G radio network design for ultra-reliable low-
latency communication. IEEE network 32, 2 (2018), 24–31.

[21] Jamal Hadi Salim. 2005. When NAPI comes to town. In Linux 2005 Conf.
[22] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina

Papatriantafilou. 2017. Multiple Pattern Matching for Network Security Applica-
tions: Acceleration through Vectorization. In 2017 46th International Conference
on Parallel ProceWsing (ICPP). 472–482. https://doi.org/10.1109/ICPP.2017.56

[23] Charalampos Stylianopoulos, Simon Kindström, Magnus Almgren, Olaf Land-
siedel, and Marina Papatriantafilou. 2019. Co-Evaluation of Pattern Matching
Algorithms on IoT Devices with Embedded GPUs. In Proceedings of the 35th
Annual Computer Security Applications Conference (San Juan, Puerto Rico) (AC-
SAC ’19). Association for Computing Machinery, New York, NY, USA, 17–27.
https://doi.org/10.1145/3359789.3359811

[24] Nuutti Varis. 2012. Anatomy of a Linux bridge. In Proceedings of Seminar on
Network Protocols in Operating Systems. 58.

182

https://doi.org/10.1109/ICCNC.2016.7440668
https://www.dpdk.org
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/TNSM.2017.2734560
https://doi.org/10.1109/NFV-SDN.2015.7387409
https://doi.org/10.1109/CNSM.2015.7367386
https://doi.org/10.1109/CloudCom.2015.67
https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-configuration-low-latency
https://01.org/packet-processing/blogs/nsundar/2018/nfv-i-host-configuration-low-latency
https://www.ericsson.com/en/ericsson-technology-review/archive/2019/cloud-native-application-design-in-the-telecom-domain
https://www.ericsson.com/en/ericsson-technology-review/archive/2019/cloud-native-application-design-in-the-telecom-domain
https://doi.org/10.1109/ICPP.2017.56
https://doi.org/10.1145/3359789.3359811

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ultra Reliable Low Latency Communication Requirements
	2.2 The Evolved Packet Core
	2.3 User-space packet processing

	3 Latency and Jitter
	3.1 Packet I/O and forwarding application
	3.2 Operating System and Hardware Platform

	4 Experimental Methodology
	5 Empirical Study
	5.1 Packet I/O framework
	5.2 Application Layer Optimizations
	5.3 System Layer Configurations
	5.4 Latency vs Throughput

	6 Discussion
	7 Related Work
	8 Conclusions
	References

