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Abstract
Cyber-Physical Systems (CPS) rely on data stream processing for

high-throughput, low-latency analysis with correctness and accu-

racy guarantees (building on deterministic execution) for monitor-

ing, safety or security applications. The trade-offs in processing

performance and results’ accuracy are nonetheless application-

dependent. While some applications need strict deterministic exe-

cution, others can value fast (but possibly approximated) answers.

Despite the existing literature on how to relax and trade strict

determinism for efficiency or deadlines, we lack a formal charac-

terization of levels of determinism, needed by industries to assess

whether or not such trade-offs are acceptable. To bridge the gap, we

introduce the notion of D-bounded eventual determinism, where

D is the maximum out-of-order delay of the input data. We design

and implement TinTiN, a streaming middleware that can be used

in combination with user-defined streaming applications, to prov-

ably enforce D-bounded eventual determinism. We evaluate TinTiN

with a real-world streaming application for Advanced Metering

Infrastructure (AMI) monitoring, showing it provides an order of

magnitude improvement in processing performance, while mini-

mizing delays in output generation, compared to a state-of-the-art

strictly deterministic solution that waits for time proportional to D,

for each input tuple, before generating output that depends on it.

CCS Concepts
• Hardware → Energy metering; Smart grid; • Information
systems → Data streaming; • Software and its engineering
→ Consistency.
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1 Introduction
Data stream processing [19] is widely adopted for analysis of con-

tinuous streams of data produced in Cyber-Physical Systems (CPSs),

for extraction of information useful for the operation, protection

and dependability of the systems (e.g., smart meters data valida-

tion [20, 21] or vehicular data analysis [8, 12, 22]). Moreover, it is

compliant with the needs for decentralized processing and further-

more, the research community is investing significant efforts in

encompassing parallelism for stream processing for a large spec-

trum of devices, from embedded edge units to high-end servers.

Streams consist of sequences of tuples and are unbounded by

definition. Therefore one-pass analysis is commonly performed

on windows of data, whose boundaries change following the time

carried by tuples’ timestamps. A key challenge in processing data

from distributed sources resides in its processing order, since the

latter can influence the results. Simply put, the results for a certain

window of tuples are accurate and can be produced as deterministic
outcomes, depending on the condition that there are no still-to-

be-processed tuples (because of late arrivals) contributing to such

window. In this sense, totally ordered streams with no late arrivals

simplify the generation of accurate, deterministic results.

Tools such as Viper [22] make sure that results from process-

ing parallel streams are deterministic, by building on sorting tech-

niques. Relaxed determinism guarantees are nonetheless desirable

and preferable for some applications for which fast (but possi-

bly not accurate) results are more valuable than accurate but late

ones [5, 23]. Notice that, sorting of all input data and delaying pro-

cessing due to few late arrivals, can unnecessarily penalize parts

of the analysis that do not depend on late arrivals. An example ap-

plication is data validation in an Advanced Metering Infrastructure

(AMI) system of an electricity grid, to distinguish out-of-range val-

ues or value-patterns by Smart Meters (SM) that malfunction [21].

Why existing approaches fall short? Available approaches for re-

laxed determinism fall short for at least three reasons. First, there

is lack of a formal characterization of the possible results produced

by a streaming application with relaxed determinism guarantees.

Such a characterization is needed by data analysts in order to un-

derstand and estimate whether the effects of relaxed determinism

are adequate or not for sensitive applications, when the latter’s

outcomes influence the dependability of a system.

Second, existing approaches that deal with out-of-order tuples

are either integrated within a specific Stream Processing Engine

(SPE) or require ad-hoc coding to maintain fine-grained control.
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The Apache Flink Streaming API [4] and Apache Beam Streaming

pipelines [3] are examples of SPE-specific solutions. Both allow

for processing of out-of-order tuples by introducing watermarks

and multiple evaluations of windows, as discussed in the Dataflow

model [2]. However, both require careful considerations about

how duplicate or updated results are handled within the query.

Enhanced stateful operators [15] or storing and restoring state for

late arrivals [17] are other example approaches that, by requiring

additional functionality of the SPE, can result in limited usability.

Data analysts might not have the option to choose which SPEs

should be used and could also lack the advanced programming

skills needed to integrate an approach in a given SPE. Avoiding en-

hanced operators allows the analysts to use any SPE that supports

basic aggregation operators.

Third, existing solutions can have prohibitive memory overheads

when keeping all data in memory for a given lateness interval, as de-

tailed later in the paper. Hence, their usage in large CPSs, composed

of computationally-constrained devices, can also be limited.

Contributions Motivated by these observations, we formalize the

concept of 𝐷-bounded eventual determinism (𝐷 being a known

bound on the timestamp-based out-of-order delay of late input

tuples). We also propose TinTiN; a streaming middleware, that can
top-up the guarantees of aggregation applications that originally en-

sure determinism for sorted input sequences, to enforce D-bounded

eventual determinism for out-of-order input sequences, without

requiring modification of the application or the SPE, if the applica-

tion conforms to a set of assumptions (essentially providing some

information about its semantics and the data fed to it; cf. § 3).

TinTiN does not delay results that can be accurately generated

when no data is missing, while it “replays” portions of input data,

when there are late arrivals. The “replayed” data is fed to an appli-
cation’s replica; to prevent the arbitrary time order (and possible

overlap) of the relayed data, TinTiN manipulates their timestamps,

(hence, their “time travelling”) safely and according to the applica-

tion’s semantics. Since data can be “replayed” by TinTiN, some re-

sults are not guaranteed to be delivered exactly once. Such a behav-

ior has been proposed in pioneer SPEs such as Borealis [5] (with the

introduction of special UNDO or TENTATIVE tuples) and more re-

cently in the Dataflow model [2]. Existing approaches, nonetheless,

have large memory requirements since they maintain large win-

dows and also demand that all operators can handle updated results.

In summary, we show that TinTiN enables, without changes on

an SPE’s operators, (i) timely processing of data, i.e. as soon as it

is available, allowing the user to act on preliminary results imme-

diately, (ii) the generation of final results, identical to the ideal case

of no late arrivals, as soon as the relevant data has arrived, and (iii)

small memory and time overheads, compared with state-of-the-art

solutions (e.g. Apache Flink), which can guarantee determinism by

processing data when the 𝐷 bound expires (i.e., when late arrivals

can no longer be seen), with output latency proportional to 𝐷 and

large memory overheads. These properties can make the difference

between an approach being impossible and possible to consider in

deployments, as we show in the example massive-data industrial

use-case on data validation in our evaluation; in particular this

use-case has been the key motivation for working on the problem.

The rest of the paper is organized as follows: the preliminaries

are covered in § 2 after which we describe our system model in § 3,

followed by the formal definition, goals and evaluation metrics of

𝐷-bounded eventual determinism in § 4. TinTiN’s overview and

core functionality, including algorithmic design are in § 5 and § 6,

while § 7 evaluates TinTiN with our real-world application. Other

related work and concluding remarks are discussed in § 8 and § 9.

2 Preliminaries

2.1 Stream processing
In data streaming applications, data is processed by queries, i.e.,
Directed Acyclic Graphs of streams and operators, deployed and

run by SPEs. In the remainder, we use the terms query and applica-

tion interchangeably. Each stream carries tuples sharing a schema

⟨𝑡𝑠, 𝐴1, . . . , 𝐴𝑛⟩, where 𝑡𝑠 is the tuple’s event timestamp (which car-

ries the notion of time for the query’s operators [2]), and𝐴1, . . . , 𝐴𝑛

are application-specific attributes.

We focus on applications composed by a sequence of one or more

stateful aggregate operators, as well as by an arbitrary number of

stateless operators. We use the term user-defined application (UDA)

to refer to one such application. Stateful aggregate operators (also ref-
ered to asAggregates) produce results that depend onmultiple input

tuples (e.g., to compute an average value). Stateless operators on the

other hand process tuples without maintaining state that depends

on the processed tuples (e.g., by filtering tuples based on their values

or mapping their input schema to a different output schema). State-

less operators do not change timestamps, as in e.g. Apache Flink [4].

Commonly each Aggregate maintains a sliding window, a portion
of the recent input tuples, that are processed to deliver results

as output tuples. More specifically, we consider that the stateful

aggregation of each Aggregate of a UDA is defined over a time-

based sliding window𝑊 , characterized by its size WS and advance

WA, and a set of functions {𝑓1, 𝑓2, . . .}.For example, an Aggregate

could maintain a sliding window withWS 2 hours andWA 1 hour

to maintain consecutive readings for a smart meter (SM) in order to

calculate the hourly consumption by taking the difference between

the readings. Notice that different Aggregates of the same UDA can

have different size and advance parameters for their windows.

Each Aggregate defines an optional key-by parameter (a subset of
the input tuples’ schema). If such a parameter is set, the aggregate

maintains dedicated windows for each distinct set of key-by values

observed in the stream. For the AMI measurements validation ex-

ample, the input schema is ⟨𝑡𝑠, 𝑠𝑚𝐼𝐷, 𝑐𝑐⟩, where 𝑠𝑚𝐼𝐷 is the ID for

the SM and 𝑐𝑐 is the cumulative consumption that the meter has

registered at timestamp 𝑡𝑠 . For ease of notation, we assume such a

key attribute, denoted by 𝑘 , is defined for all tuples. This does not

affect generality, since all input tuples can share the same 𝑘 value

if they are to be aggregated in the same window.

In the remainder, we use the term window to refer to the object

that is maintained by an Aggregate for each key-by value and

evolves according to the tuples being processed, while we use the

term window instance to refer to the window covering a specific time
interval. As an example, for an Aggregate with WS and WA set

to 1 hour and 30 minutes, respectively, a window instance could

refer to the window covering the interval [08:00,09:00), while the

subsequent instance is the one covering the interval [08:30,09:30).
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Being𝑊 the window an Aggregate maintains for a key-by value,

each window instance 𝑊 𝑖
covers the information of all tuples

𝑡𝑖 |𝑡𝑖 .𝑡𝑠 ∈ [𝑊 𝑖
𝐿
,𝑊 𝑖

𝑅
), where𝑊 𝑖

𝐿
is the left boundary of𝑊 𝑖

, and𝑊 𝑖
𝑅
=

𝑊 𝑖
𝐿
+WS is the right boundary of𝑊 𝑖

. Initially,𝑊 0
covers the first

WS-long interval at event time 0. Then, the evolution of window𝑊

depends on three methods: add, fire and remove. These methods

are invoked by the SPE maintaining𝑊 as specified in the following:

S1 Method add is invoked for each input tuple 𝑡 |𝑡 .𝑡𝑠 ∈ [𝑊 𝑖
𝐿
,𝑊 𝑖

𝑅
)

and (optionally) used to update the state of functions {𝑓1, 𝑓2, . . .}
(if the latter can be updated incrementally).

S2 Method fire is invoked as soon as an input tuple 𝑡 |𝑡 .𝑡𝑠 ≥𝑊𝑅 is

received. Then, the outcome of functions {𝑓1, 𝑓2, . . .} is retrieved
and forwarded as an output tuple. The timestamp of such output

tuple is set to𝑊𝐿 . Let that tuple be called the result of that
window instance, denoted by result(𝑊𝐿).

S3 Method remove is invoked immediately after the fire method

is invoked. All tuples 𝑡 |𝑡 .𝑡𝑠 ∈ [𝑊 𝑖
𝐿
,𝑊 𝑖

𝐿
+WA) are removed from

𝑊 and the state of functions {𝑓1, 𝑓2, . . .} is updated accordingly

(if they define one). Then,𝑊 is shifted forward by WA (i.e.,𝑊 𝑖
𝐿

and𝑊 𝑖
𝑅
are updated to𝑊 𝑖

𝐿
+WA and𝑊 𝑖

𝑅
+WA, respectively),

thus moving to window instance𝑊 𝑖+1
.

Methods fire and remove are repeatedly invoked, one after

the other, until the input tuple 𝑡 ′ triggering the invocation of the

fire method falls within𝑊 ’s left and right boundaries. Continu-

ing the previous example, if the current window instance covers

[08:00,09:00) and the next input tuple has timestamp 10:15, meth-

ods fire and remove would be invoked 3 times each, for𝑊 to

eventually cover [09:30,10:30), to which the input tuple falls in.

We assume method fire is only invoked for window instances

containing at least one tuple. Hence, no results are initially produced

for window instance𝑊 0, . . . ,𝑊 𝑖
, where𝑊 𝑖

is the earliest window

instance to which the first tuple of a given key falls in.

We assume that all the windowsmaintained for the different keys

observed in the input stream are aligned. That is, if a window for a

certain key shifts to a certain [𝑊 𝑖
𝐿
,𝑊 𝑖

𝑅
) period, so do all thewindows

of other keys maintained by the application. This is enforced by

invoking methods fire and remove on all existing windows when

an input tuple 𝑡 ′ |𝑡 ′.𝑡𝑠 ≥𝑊 𝑖
𝑅
is processed. Also, we assume that a

window for a new key value is created when an input tuple carrying

such value is processed and deleted if, after invoking the method

remove for it, no tuple is left in the window.

Running Example We introduce an example query, based on a

real world use case to illustrate the concepts in the paper. Smart

Meters (SM) can break down gradually, resulting in unreliable read-

ings. In the example the start of the breakdown can be detected by

a pattern: one or more large hourly consumption values followed

by a negative hourly consumption within four hours. As soon as

the pattern is detected for a specific SM, a technician is deployed

to replace the SM. The pattern is identified by a query consisting

of two Aggregates. Aggregate 1 calculates the hourly consumption

by taking the difference between every two consecutive readings.

It therefore has aWS 2 hours and WA 1 hour. Aggregate 2 has WS
4, WA 1 hour, and produces an alert if the pattern is matched. The

value of the alert is the number of large consumption values in

the match. Figure 1 shows a “cross-section" of an execution of the

query and the results it produces for an input stream consisting of

10 tuples for a single SM.

A1

A2

I

O

14 15 6 7 17 27 10 11

1 -9 1 10 10 -17 1

2 2

3 4

101

1 1 1

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:0000:00 01:00
t

Figure 1: Example “cross-section” of a query execution, processing
data for one Smart Meter. The input stream 𝐼 shows the readings,
while their timestamps are given on the time axis 𝑡 . The query has two
aggregate operators.𝐴1 calculates the hourly consumption by taking
the difference between two consecutive readings. 𝐴2 outputs alerts if
a pattern is found in its window. The pattern is one or more large
consumption values (marked in blue) followed by a negative value
(marked in yellow) within four hours. The value of the produced
alerts (in red) indicates the number of large values in the match. 𝐴1

hasWS 2 andWA 1, while𝐴2 hasWS 4 andWA 1. The timestamp of re-
sults is equal to the left (inclusive) boundary of the window instance
that produced it. The right boundary of a window is exclusive.

2.2 Strict determinism
The execution of a stateful operator is deterministic if the operator’s

semantics are correctly enforced, independently of (i) the operator

implementation and deployment and (ii) the input data ordering.

For instance, when running an aggregate operator counting tuples

on a per-key basis over a window withWS andWA set to one hour,

if 5 tuples referring to key 𝑘 and having timestamps ∈ [08:00, 09:00)
are delivered in the input stream, the Aggregate’s execution is de-

terministic if the operator produces the correct count for key 𝑘 and

window [08:00, 09:00) independently of whether (i) the operator is

run sequentially by one thread or in parallel by several threads (e.g.,

assigning each thread a subset of keys) and (ii) the input tuples are

delivered in timestamp order or not to the thread(s) running the

Aggregate’s analysis.

For a single-threaded aggregate operator whose sliding window’s
execution evolves over time upon the invocations of methods add,
fire and remove as described in § 2.1, it is known from the literature

that deterministic execution is enforced if:

(1) Functions’ {𝑓1, 𝑓2, . . .} analysis uses no randomness and depends

exclusively on input tuples’ attributes, and

(2) Input tuples are fed in timestamp order.

If these conditions hold, the method fire is invoked for each win-

dow𝑊 𝑖
only after the method add is invoked for all the tuples

contributing to𝑊 𝑖
, and each output tuple depends exclusively on

the values carried by the tuples contributing to it (including the

timestamp, which determines the order in which tuples are added
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to the window). For a multi-threaded aggregate operator, in which

distinct threads carry out the analysis of different keys, the above

set of sufficient conditions to imply determinism, are commonly

complemented with the following one:

(3) Exactly one of the threads running the analysis in parallel is

responsible for the analysis of a given key.

This is a sufficient condition to prevent inconsistencies of state

updates in the analysis. It can be possible to prevent the latter with

other methods, however this is a common one practice.

Regarding guaranteeing determinism for a UDA, a sufficient con-
dition is to ensure (i) determinism on the operator level and (ii) time-

stamp-ordering in the data flows to the operators, including the

internal, inter-operator ones [6, 14, 22]. In the following, we say

that a streaming aggregation application enforces strict determinism
if such a condition is met. We use the term strict to differentiate

the determinism from the relaxed one we propose here.

3 System Model
Here we specify some more detail about the type of the User-

Defined Applications (UDAs, serial aggregation applications) tar-

geted. We assume the UDA is fed with one input stream and it can

run in parallel the analysis of different keys. We assume that strict

determinism is guaranteed for the UDA by guaranteeing determin-

ism for all the operators composing the UDA and the inter-operator

flows, as explained in § 2.2. We wish to note that each result 𝑡𝑜
of the UDA, given that it is a tuple that bears the timestamp of

the last aggregate in the UDA, can be uniquely indexed by that

timestamp (this is due to the fact that output tuples of operators

are timestamped using the left boundary of the window instance

they correspond to, as mentioned in S2 in § 2).

We also require the following to hold (we refer the reader to § 6

for further discussions and the justification of these assumptions):

A1 By observing the last two tuples 𝑡𝐴, 𝑡𝐵 received for a certain key

𝑘 s.t. 𝑡𝐵 .𝑡𝑠 > 𝑡𝐴 .𝑡𝑠 , it is possible to know whether a hole exists,
i.e. there exists a tuple with timestamp ∈ (𝑡𝐴 .𝑡𝑠, 𝑡𝐵 .𝑡𝑠) that can
either arrive late or not at all. This is the case, for instance,

when the input data sampling period is known or when an

enumerator attribute is defined for the input data.

A2 A known maximum out-of-order delay 𝐷 allows to distinguish

late arrivals that can still be received, from those that will not

(i.e., that can be ignored). More concretely, given any arbitrary

point in any arbitrary execution, being 𝜏 the highest timestamp

received by the application, late arrivals with timestamps ∈
[𝜏 − 𝐷, 𝜏] can still be received, while those with timestamps

smaller than 𝜏 − 𝐷 cannot (i.e., they can be ignored).

A3 Analysis of data might be related to its seasonality, i.e. results

could differ depending on e.g. the hour of the day, or the day

of the week. We define the periodicity 𝑃 of a UDA as the

maximum period that is relevant for the seasonality of the data;

e.g., 𝑃 is 24 hours if tuples are treated different depending on the

time of day of their timestamp, while it is one week if treatment

also depends on the day of the week. If the analysis of the UDA

is not related to the seasonality of the data, we consider 𝑃 = 1,

else, we assume that its 𝑃 is known.

A4 A sorted sequence of tuples, denoted 𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ that triggers at

least one output tuple is made available to TinTiN.

A5 The sequence of stateless and aggregate operators composing

the UDA is known, as well as the finite window sizes and ad-

vances of all the aggregate operators in the UDA.

Note that the UDA developer who wants to use TinTiN to deal with

out-of-order input data will have all the information required.

4 𝐷-bounded eventual determinism
As mentioned in § 1, outputting information in a timely fashion

is useful or critical in certain applications. We propose D-bounded
eventual determinism to formalize guarantees that enable timeliness

of output that depends on timely available input, while loosening

only part of the requirements, compared to strict determinism.

Definition 1. Given a stream 𝐼 that is not timestamp-sorted,
we say that 𝐼 is within lateness bound 𝐷 if, for any 𝑡 in 𝐼 , for
all subsequent tuples 𝑡 ′ in 𝐼 for which 𝑡 ′.𝑡𝑠 < 𝑡 .𝑡𝑠 , the condition
𝑡 .𝑡𝑠 − 𝑡 ′.𝑡𝑠 ≤ 𝐷 holds.

Definition 2. Given:
• 𝐴, a streaming application that supports deterministic execution
for timestamp-sorted streams,

• 𝐼 , a timestamp-sorted input stream,
• 𝑂 , the output stream produced by 𝐴 when all input tuples from 𝐼

are fed to 𝐴, and
• 𝐸, the set of all possible executions in which 𝐴 is fed with a permu-
tation of 𝐼 that is within lateness bound 𝐷 (Definition 1);

we say that 𝐴 is extended to a 𝐷-bounded eventually determin-
istic streaming application 𝐴′ if, for 𝐴, 𝐴′ and any 𝑒 ∈ 𝐸, being:
• 𝑜𝑡𝑠,𝑘 ∈ 𝑂 the tuple output by 𝐴 for timestamp 𝑡𝑠 and key 𝑘 ,
• 𝑜 ′1

𝑡𝑠,𝑘
, . . . , 𝑜 ′𝑛

𝑡𝑠,𝑘
the ordered sequence of output tuples produced by

𝐴′ for timestamp 𝑡𝑠 and key 𝑘 (with 𝑛 ≥ 1),
then 𝑜𝑡𝑠,𝑘 = 𝑜 ′𝑛

𝑡𝑠,𝑘
.

Definition 2 says that an eventually deterministic streaming

application 𝐴′
(derived from 𝐴 that is strictly deterministic when it

processes timestamp-ordered tuples), processing a stream within

lateness bound 𝐷 , produces all tuples that 𝐴 produces when it

processes the same input but sorted. 𝐴′
might produce more tuples

than 𝐴, but for every tuple produced by 𝐴, the latest tuple with

identical timestamp and key produced by𝐴′
will be equal. Note that,

if𝐴 can produce multiple output tuples for a specific timestamp and

key, then these should be distinguishable, by e.g. another attribute.

Evaluation metrics When comparing the results observed for a

streaming application A’ with relaxed deterministic guarantees

(when fed with an input stream 𝐼 that might be unsorted), with

those of a UDA A that enforces strict determinism for a sorted

version of 𝐼 , we say an output tuple produced by A’ is (i) exact if
an output tuple carrying the same attribute values (for the same

timestamp and key 𝑘) is produced by A, (ii) duplicate if another,
exact tuple (for the same timestamp and key 𝑘) has already been

produced by A’, or (iii) different if an output tuple with different

attribute values for the same timestamp and key 𝑘 (i.e. not exact) is

produced by A. (iv) It is also possible to have tuples omitted by A’,

i.e. tuples produced by A but not by A’.

Note that if A’ enables D-bounded eventual-determinism for

an input stream 𝐼 that is within lateness bound 𝐷 , no omitted

output tuples exist and, for each different output tuple (if any), one
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or more exact output tuples are also later produced for a given

timestamp and key 𝑘 . If, on the contrary, A’ does not enable D-

bounded eventual determinism, both omitted and different output

tuples not followed by at least an exact output tuple can be observed.

Example continued: Recall the running example where occur-

rences of a specific pattern indicating Smart Meter hardware failure

are identified. Figure 1 shows the query processing data for a single

SM where the pattern occurs twice. Figure 2 shows the same exam-

ple, but with two missing input tuples. The first occurrence of the

pattern is not identified when this input is missing, the alerts from

this occurrence are omitted. The second occurrence is only partially
affected by the missing input and is identified. The output with

timestamps 04:00 and 05:00 is different. The output for timestamp

06:00 does not depend on the missing data and is exact. If exact out-
put is produced once more, for example by processing the relevant

data at a later time when the missing tuples have arrived, it would

instead be duplicate. The figure also illustrates one of TinTiN’s

advantages: by being able to continue the processing even if data

is missing, TinTiN identifies the second occurrence of the pattern

without waiting for the missing data to arrive. A technician can

be dispatched to the affected SM immediately after identification,

minimizing the amount of unreliable data sent by the SM.

Let us also define the logical latency of an output tuple 𝑡 , the

difference between 𝑡 .𝑡𝑠 and the highest timestamp observed in the

stream when the exact result for 𝑡 is produced.

Note that for each output tuple 𝑡 , if strict determinism is enforced

by simply postponing the processing of each input tuple by D

time units from its timestamp (e.g., as done by Apache Flink’s

Complex Event Processor) its logical latency is 𝐷 , while it can be

made (significantly) smaller than 𝐷 , by leveraging finer-grained

techniques for managing out of order data, as we showwith TinTiN,

when enforcing D-bounded eventual determinism.

Similarly to logical latency, responsiveness is defined as the

difference between the highest timestamp observed in the stream

when a late tuple 𝑡𝑙 arrives and the highest timestamp in the stream

when the final exact result for 𝑡𝑙 is produced. In the case where strict

determinism is enforced by postponing processing as described

above, the responsiveness will be 𝐷 minus the lateness of 𝑡𝑙 , while

it can be made smaller by TinTiN just as the logical latency.

5 TinTiN’s overview
Here we give an overview of TinTiN, while in the subsequent sec-

tion we describe its core design and its algorithmic implementation.

TinTiN processes data even though some tuples are late. Our

pattern matching example with Smart Meter data shows that this

allows some matches to be identified despite missing data. Figure 2

illustrates this, the alerts with timestamps 04:00, 05:00 and 06:00

are produced. The alerts from 04:00 and 05:00 have a different value

compared with the alerts produced when no data is missing. The

implications of such differences are application specific. In this

particular example a technician will be deployed regardless of the

value of the alert, so there is no direct implication. In order to

eventually deliver the exact output, TinTiN replays portions of data
when late data arrives. Such portions are processed by a copy of the

UDA which produces updated results. This is illustrated in Figure 4

where a portion of data is replayed. The extra alerts due to replaying

might cause another technician to be dispatched; i.e. the dispatcher

has to take extra care when such results are produced.

Considering the example, let us proceed with the description of

themiddleware: TinTiN does not delay results that can be accurately

generated in the cases of no missing data. When intervals of data

with missing tuples have been processed, as also mentioned in the

example, it later replays sufficient portions of the input, when late

data arrives. Moreover, it aims at achieving the aforementioned

behaviour efficiently, both from the point of view of computational

and memory overheads, as well as from the perspective of limiting

the amount of “unnecessary", partial, results. Furthermore, it works

as a wrapper of the UDA in any SPE, without requiring to modify

the internals of the latter. The following list of steps and Figure 3,

outline at a high level the aforementioned procedures.

(1) TinTiN forwards to the UDA the input tuples that arrive in

increasing timestamp order.

(2) TinTiN also temporarily maintains a sufficiently large portion

of the input stream that initially contained some hole(s) (caused
by tuple(s) being late), named relevant context of the holes(s).

(3) Later, if late tuples arrive within the bound D, TinTiN “replays”

the relevant context of the respective hole(s), to get refined

results. To avoid interference with the processing of the in-

order data, the replayed data is fed to a replica of the UDA
(UDA𝑅 ; c.f. Fig 3).

(4) To prevent that the arbitrary time-order and the potential over-

lap of relevant context of late tuples to affect consistency of

results, when replayed at UDA𝑅 , TinTiN shifts forward by a

given offset all the timestamps of each relevant context (hence,

“time travelling”), safely and according to the application’s se-

mantics and shifts back the final results’ timestamps to the

original ones when forwarding those results to the user.

Why can TinTiN guarantee eventual determinism? The tuples that

arrive in timestamp order and without holes, generate the same

result as the strictly deterministic case when fed to the UDA. If a

portion of input forwarded to the UDA contains a hole though, such

a portion is also sent to the UDA𝑅 (at least once) when holes are

later filled in (with tuples arriving with maximum lateness 𝐷). This

implies that multiple and possibly different, improved, versions

of the same result could be delivered to the user. However each

result will be based on a relevant context of hole(s) that is gradually

filled in by late tuples. Following this procedure, TinTiN eventually

delivers the output that would be generated in the ideal case (in

which there would have been no late arrivals) for the respective

window instances, i.e. it satisfies 𝐷-bounded eventual determinism

when fed with a stream that is within bound 𝐷 .

How is TinTiN’s processing safe and consistent? The aforemen-

tioned 4 steps need to be carried out in order tomake sure that safety

in processing is preserved, i.e. that state created by the process-

ing of different portions of data (overlapping intervals, intervals

that are forwarded out of order) is not inconsistently mixed up

when data is being replayed. This is achieved by replication, in a

two-folded fashion: (i) for separating the processing of replayed

tuples from the processing of in-order tuples, the replaying of the

relevant context of holes are carried out by UDA𝑅 and not by UDA;

(ii) for avoiding UDA𝑅 to mix up replaying of overlapping relevant
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Figure 2: The same “cross-section” as seen in Figure 1, but with read-
ings from 04:00 and 05:00 missing at the time of processing. All win-
dow instances that are affected by the missing input are dashed.

contexts of holes, the latter are replayed with modified time, which

is modified back to the original, when the result is produced.

For TinTiN to efficiently carry out the above, the following ques-

tions need to be answered, as explained in the next section.

Q1 Which results can be improved and forwarded to the end-
user? In case of late data, it is straightforward to identify such

results for a query composed by a single aggregate operator, but

there is more to think about for arbitrary UDAs.

Q2 What relevant context to replay? For each result that can

be improved, how to identify which source data is sufficient to

maintain in memory, in order to replay if/when late tuples arrive?

Q3 How to replay efficiently? If, due to one or more late tuples,

TinTiN needs to re-produce multiple results, can it do it efficiently

without replaying many times overlapping relevant contexts?

Q4 How to replay safely? How to ensure that the “time travel-

ling" is correct, i.e. that the processing state of the𝑈𝐷𝐴𝑅 does not

get mixed up with that of other replayed data?

Input data without late arrivals

End user
...

Replayed data (based on 
triggering condition)

UDARReplica of the UDA

UDATinTiN
Input data

Results produced when 
processing replayed data

Temporary buffer of 
windows with holes

Tuples’ timestamps are changed 
before / after UDAR’s processing

Figure 3: Overview of TinTiN’s architecture.

6 TinTiN’s core functionality
This section covers TinTiN’s design and its “time travel” mechanism,

answering the questions of the previous section. Then, it presents

TinTiN’s algorithmic implementation and the main argument for

satisfying 𝐷-bounded eventual determinism.
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Figure 4: Example “cross-section” of an execution at the UDA𝑅 show-
ing the relevant context of a hole (§ 6.2, Figure 2), in green, as it will
be replayed, when the hole is filled by the encircled late arrival. The
timestamps of the input data have been shifted by TinTiN (§ 6.4), e.g.
timestamp 00:00 in Figure 2 is shifted to 14:00. The output affected by
the late arrival, i.e. that can be improved by the late arrival (§ 6.1), is
shown in purple. For example, the alert with timestamp 14:00 could
not be produced without the late arrival, cf. Figure 2.

6.1 Answering Q1: Which results can be
improved and forwarded to the end user

A hole in the input stream of a UDA can affect multiple results, as

shown in Figure 2. The quality of such results can be improved by re-

processing the relevant context of the holes once the late tuples have

arrived. Let us first determine the results that are affected (i.e., that

can be improved) by late values for a UDA with a single Aggregate:

Lemma 1. Given an Aggregate 𝐴 with window sizeWS, the times-
tamps of 𝐴’s results that are potentially affected by a missing input
tuple 𝑡 with timestamp 𝑡𝑠 , are in (𝑡𝑠 −WS, 𝑡𝑠].

Proof. The timestamp of any affected result, potentially im-

provable by a late input 𝑡 , equals the left boundary of any window

instance that contains 𝑡 (cf. S2 in § 2). The window with the earliest

left boundary that contains 𝑡 starts no earlier than 𝑡𝑠 −WS. The
window with the latest left boundary containing 𝑡 cannot start after

𝑡𝑠 , since the left boundary of a window is inclusive and windows

with a left boundary larger than 𝑡𝑠 do not include 𝑡 . □

Consider again the example in Figure 2 with two Aggregates. A

hole in the input stream affects results from𝐴1, which in turn affects

more results from 𝐴2. An interval that contains the timestamps for

all of the affected results is given by the following lemma.

Lemma 2. Consider a UDAwith𝑛 Aggregates in series with window
sizesWS𝑖 ; 𝑖 ∈ [1, 𝑛], and a missing input tuple 𝑡 with timestamp 𝑡𝑠 .
The timestamps of the UDA results that are potentially affected due
to the missing input are in (𝑡𝑠 −∑

𝑖 WS𝑖 , 𝑡𝑠].

Proof. The timestamps of the affected results of the first Aggre-

gate 𝐴1 are contained in the interval (𝑡𝑠 −WS1, 𝑡𝑠] (Lemma 1). The

same argumentation, applied for the second Aggregate 𝐴2 and for

𝑡𝑠−WS1 and 𝑡𝑠 , allows to find the bounding interval for timestamps

of𝐴2’s affected results, implying the interval (𝑡𝑠− (WS1+WS2), 𝑡𝑠].
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The same reasoning applied recursively for any subsequent Aggre-

gate, results in the interval in the lemma statement. □

It should be noted that Lemma 2 implies:

Observation 1. The results to forward to the end user when data
is replayed due to a late input tuple with timestamp 𝑡𝑠 , are the ones
with timestamps in (𝑡𝑠 −∑

𝑖 WS𝑖 , 𝑡𝑠].

This is illustrated in Figure 4 where the relevant context for the

late arrival is replayed. The updated results to forward are marked,

while results outside the interval in Observation 1 (i.e. not to be

forwarded) are removed from the output stream.

6.2 Answering Q2: Sufficient input to replay
To determine the exact content of the sufficient relevant context

of a hole, we need to find all input tuples that are relevant to the

potentially affected results, so that those tuples are stored and

replayed together with late tuples if/when the latter arrive.

Lemma 3. Consider a result tuple 𝑡 with timestamp 𝑡𝑠 , produced
by an Aggregate 𝐴 with window size WS. The timestamps of all
input tuples to 𝐴 that are relevant for (i.e. potentially affect) 𝑡 are in
[𝑡𝑠, 𝑡𝑠 +𝑊𝑆).

Proof. The lemma follows directly from the fact that a result

with timestamp 𝑡𝑠 is produced by a window instance whose inclu-

sive left boundary is 𝑡𝑠 and exclusive right boundary is 𝑡𝑠 +WS. □

Figure 4 shows the running example, marking all relevant input

tuples for a set of results from the example-UDA. The bounding

interval for these tuples follows from the following lemma.

Lemma 4. Consider a UDAwith𝑛 Aggregates in series with window
sizes WS𝑖 ; 𝑖 ∈ [1, 𝑛], and a result tuple 𝑡 with timestamp 𝑡𝑠 . The
timestamps of all input tuples to the UDA that are relevant for 𝑡 are
in [𝑡𝑠, 𝑡𝑠 +∑

𝑖 WS𝑖 ).

Proof. Lemma 3 implies that the timestamps of the relevant

input to the first Aggregate are in [𝑡𝑠, 𝑡𝑠+WS1). The same argumen-

tation can be applied for the second Aggregate for 𝑡𝑠 and 𝑡𝑠 +WS1,
to find the bounding interval for timestamps of affected results from

the second Aggregate, implying the interval [𝑡𝑠, 𝑡𝑠 + (WS1 +WS2)).
The same reasoning can be applied recursively for any subsequent

Aggregate, resulting in the interval in the lemma statement. □

Combining the lemmas from § 6.1 with lemmas 3 and 4, we get:

Lemma 5. Consider a UDA with 𝑛 aggregate operators in series
with window sizes WS𝑖 ; 𝑖 ∈ [1, 𝑛], and a hole in the input stream
with timestamp 𝑡𝑠 . The relevant context of the hole is contained in
the interval (𝑡𝑠 −∑

𝑖 WS𝑖 , 𝑡𝑠 +
∑
𝑖 WS𝑖 ).

This is illustrated in Figure 4 for the running example UDA and

the relevant context of the encircled late arrival.

6.3 Answering Q3: Replaying efficiently
The logic with which the relevant contexts of late tuples, tem-

porarily stored at TinTiN, are replayed, depends on a user-defined

triggering condition𝑇𝐶 . TCs can imply a trade-off between different

properties, e.g. between efficient processing and how fast a result

for a late arrival is produced, as explained in the following.

An eager TC could trigger the replay of a relevant context for a

hole as soon as the late arrival filling it is received. Such a condi-

tion, reacting immediately to each late arrival, minimizes the time

between receiving the late arrival and producing potential results

to which it contributes. This could be beneficial for applications

that need up-to-date (possibly different) results as soon as possible.

Alternatively, a lazy TC could instead trigger the replay of a

relevant context of hole(s) for a certain key 𝑘 when multiple holes

have been filled. For use cases where late arrivals arrive in batches,

this can be achieved by delaying the firing of the trigger until an

on-time tuple is observed for 𝑘 . Such TC trades increased logical

latency for better processing throughput. Note that it is possible

to construct a TC that favors efficient processing even more by

waiting even longer before triggering. More efficient processing

is achieved by combining the relevant context for multiple late

arrivals where it overlaps. This is possible due to the associative

property of the relevant context, shown here:

Lemma 6. Consider a UDA with 𝑛 aggregate operators and two
holes with timestamps 𝑡𝑠 and 𝑡𝑠 + 𝑥 , for any 𝑥 > 0 s.t. there is
overlap in their respective relevant contexts. The set of affected results
produced by replaying each relevant context separately is equal to the
set of affected results produced by replaying the union of the relevant
contexts once.

Proof. The affected results produced by replaying the relevant

context for the late arrival with timestamp 𝑡𝑠 have timestamps in

the interval (𝑡𝑠 − ∑
𝑖 WS𝑖 , 𝑡𝑠] according to Lemma 2. Results for

the late arrival with timestamp 𝑡𝑠 + 𝑥 , have timestamps in interval

(𝑡𝑠 +𝑥 −∑
𝑖 WS𝑖 , 𝑡𝑠 +𝑥]. The size of the relevant context for the late

arrival with timestamp 𝑡𝑠 is (𝑡𝑠 −∑
𝑖 WS𝑖 , 𝑡𝑠 +

∑
𝑖 WS𝑖 ), according

to Lemma 4. Since the relevant contexts of the two late arrivals

overlap, 𝑥 <
∑
𝑖 WS𝑖 . Therefore 𝑡𝑠 +𝑥 −

∑
𝑖 WS𝑖 < 𝑡𝑠 , implying that

intervals for the affected results overlap and are contained in the

interval (𝑡𝑠 −∑
𝑖 WS𝑖 , 𝑡𝑠 + 𝑥]. This interval is equal to the interval

obtained for the affected results by the union of the relevant context

for 𝑡𝑠 and 𝑡𝑠 + 𝑥 . □

Special consideration is due for holes that are filled after a short
amount of time (ie. before their entire relevant context has arrived),
while to obtain eventual determinism, it is required to replay all
tuples that contribute to a result that can be improved by a late

arrival. One way to ensure this, is to delay replaying until a tuple

with timestamp larger than the largest timestamp in that relevant

context arrives.

6.4 Answering Q4: Replaying safely
Replaying the relevant context of a late arrival directly to the UDA

would cause the input stream of the UDA to become out of order

and interfere with data currently being processed. For this reason,

TinTiN replays data to a replica of the UDA, UDA𝑅 . Note that

UDA𝑅 , being a replica of UDA, guarantees deterministic processing

only for timestamp sorted input. However, replaying the relevant

context of two different holes can be problematic for two reasons:

(1) It causes the input stream to UDA𝑅 to become out of order if

the second relevant context starts with a timestamp lower than

the highest timestamp of the first relevant context.
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(2) It can cause erroneous results if the data for the different late

arrivals ends up in common windows.

Intuitively, a straightforward solution to prevent this from hap-

pening, is to deploy a “fresh” UDA𝑅 (i.e., that has not yet processed

any tuple) before replaying any past portion of input tuples. De-

ploying a fresh UDA𝑅 incurs large overhead though. Relying on

a method that resets the UDA𝑅 ’s state is also not an option, since,

for the sake of generality, we do not assume that the SPE or the

UDA’s programmer provide it.

TinTiN’s novel approach is to (i) shift the timestamps of the tu-

ples in the relevant context with an offset, so that UDA𝑅 is fed with

an input stream with strictly monotonically increasing timestamps,

and tuples from one replay cannot interfere with other replays; and

(ii) shift back the timestamp of the result by the same offset.

6.4.1 Shifting timestamps of input to UDA𝑅 When processing data

in the UDA, an input tuple will belong to a specific number of

window instances for the first Aggregate. The same is true for a

tuple produced by the first Aggregate, it will belong to a specific

number of window instances for the second Aggregate and so on

and so forth. The number of window instances a tuple belongs

to depends on its timestamp as well as the window advance and

size of the Aggregate. An example of this can be seen in Figure 1,

where the output of the first Aggregate belongs to either one or

two window instances of the second Aggregate.

In order to obtain correct results when reprocessing data, it is re-

quired that every tuple contributes to the same number of window

instances as for the on-time processing. The way the tuples times-

tamps can be changed without affecting the number of window

instances they contribute to is based on the following observations:

Observation 2. Consider a UDA with 𝑛 aggregate operators in
series with window advances WA𝑖 ; 𝑖 ∈ [1, 𝑛]. The starting times of
the windows for all aggregate operators are aligned at time 0, since
all windows start in 0. Such alignment also occurs at timestamps that
are a multiple of 𝐿𝐶𝑀 (WA𝑖 ) (the least common multiple of allWA𝑖 ).

Observation 3. Consider a UDA and an input tuple 𝑡 with times-
tamp 𝑡𝑠 . Let 𝑑 denote the difference between 𝑡𝑠 and the nearest align-
ment of windows in the UDA smaller than 𝑡𝑠 . Now consider another
tuple 𝑡 ′ with timestamp 𝑡𝑠 ′, with difference equal to 𝑑 between 𝑡𝑠 ′

and its nearest alignment of windows smaller than 𝑡𝑠 ′. The number
of window instances that 𝑡 contributes to is equal to the number of
window instances that 𝑡 ′ contributes to.

Consider for example a query with two Aggregates, the first

one having WS 3, WA 2 and the second one WS 3, WA 1. Since

subsequent windows for the first Aggregate overlap one hour, in-

put tuples can contribute to either one or two window instances.

Window alignment occurs every multiple of 2 (𝐿𝐶𝑀 (1, 2)). The tu-
ples with timestamps 5 and 7 both have distance 1 to their nearest

window alignment and both contribute to two window instances.

We conclude from the observations that when changing times-

tamps, any multiple of 𝐿𝐶𝑀 (WA𝑖 ) can be added to the original

timestamps to ensure that all tuples contribute to the same number

of window instances in UDA𝑅 and the on-time UDA.

If the UDA has an internal periodicity 𝑃 as described in assump-

tion A3, cf. § 3, then this should be taken into consideration as

well when shifting timestamps of data to replay. Tuples should not

only contribute to the same number of window instances, but the

periodicity should be preserved as well. For example if a UDA has

𝑃 of one week, a tuple with timestamp 12:00 on a Monday should

also have a timestamp 12:00 on a Monday after the timestamp is

changed. This is accomplished based on the following observations:

Observation 4. The periodicity 𝑃 of a UDA is conceptually the
same as a window withWS andWA equal to 𝑃 . In other words: a new
period starts at every multiple of P and has a duration of 𝑃 .

Observation 5. Consider a UDA with 𝑛 aggregate operators in
series with window advancesWA𝑖 ; 𝑖 ∈ [1, 𝑛] and periodicity 𝑃 . The
windows for all aggregate operators, as well as the start of period,
are aligned at time 0, since all windows start in 0, as does the peri-
odicity. Alignment also occurs at timestamps that are a multiple of
𝐿𝐶𝑀 (WA𝑖 , 𝑃) (the least common multiple of allWA𝑖 and 𝑃 ).

The final consideration when shifting timestamps is that one

sequence of replayed tuples should not interfere with another se-

quence of replayed tuples. This is achieved when the sets of results

are produced by the sequences are disjoint. This can be accom-

plished by separating the timestamps from both sequences with a

safety distance, SD. The size of SD is given by the following lemma,

which follows directly from Lemma 2.

Lemma 7. Given a UDA with 𝑛 aggregate operators with window
sizesWS𝑖 and two sequences of tuples 𝑆1 and 𝑆2 where all timestamps
in 𝑆2 are larger than any timestamp in 𝑆1, no results are affected by
tuples from both 𝑆1 and 𝑆2 if the smallest timestamp in 𝑆2 is separated
from the greatest timestamp in 𝑆1 by at least SD =

∑
𝑖 WS𝑖 .

In conclusion, the following lemma justifies how timestamps can

be shifted in a way to guarantee safety in the processing.

Lemma 8. Consider a UDA with periodicity 𝑃 and 𝑛 aggregate
operators in series with window advances WA𝑖 ; 𝑖 ∈ [1, 𝑛], processing
two tuple-sequences 𝑆1 and 𝑆2. Adding 𝑧 · 𝐿𝐶𝑀 (WA𝑖 , 𝑃) to the times-
tamps of the tuples in 𝑆2, where 𝐿𝐶𝑀 (WA𝑖 , 𝑃) is the least common
multiple of all WA𝑖 and P, and 𝑧 ∈ Z so that 𝑧 · 𝐿𝐶𝑀 (WA𝑖 , 𝑃) > 𝑆𝐷 ,
guarantees that (1) all tuples in 𝑆2 still contribute to the same number
of window instances as they would have, had their timestamps not
been changed, and (2) no results are produced that are affected by
tuples from both 𝑆1 and 𝑆2.

Proof. Property 1 follows directly from Observation 5. Property

2 follows directly from Lemma 7. □

6.4.2 Restoring timestamps of UDA𝑅 results Results produced by

the UDA𝑅 cannot be forwarded to the end user without restoring

the timestamps, for obvious reasons. Therefore TinTiN should store

a mapping of the changed and original timestamps in order to re-

store the timestamps for produced results. There is no guarantee

that replaying a relevant context to UDA𝑅 will produce any re-

sults. Mappings that were stored by TinTiN can therefore become

stale. Whether a mapping is stale or not cannot be inferred by set-

ting a timeout for the result of a relevant context, since the UDA

processing latency is outside TinTiN’s control.

Notice that, since UDA𝑅 supports deterministic execution and

is fed a timestamp-sorted stream (based on TinTiN’s manipulation

of timestamps), it results in a timestamp-sorted output stream (cf.
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§ 2.2). Hence, if a replayed sequence 𝑆 results in output, stale map-

pings of changed and original timestamps for sequences replayed

earlier can be safely discarded by TinTiN, since results for them

will not be produced after 𝑆 ’s.

To prevent the size of changed and original timestamp mappings

to grow beyond a maximum size, TinTiN can replay the sample

sequence of tuples that is known to trigger an output (assumption

A4 in § 3) to flush stale mappings (in this case, without forwarding

the result to the UDA user).

6.5 Synthesis: TinTiN’s algorithmic design

Table 1: Abbreviations and parameters used in Algorithm 1

Parameter Definition

UDA, UDA𝑅 User-Defined Application and TinTiN’s replica of it

WA[] All WA in the UDA

D Max delay on UDA’s input tuples

TC Triggering condition

SD Safety distance between successive replays by

UDA𝑅 as defined in § 6.4

P UDA’s periodicity as defined in § 3

𝛽 [] TinTiN’s internal array of sorted tuples (one array

per key 𝑘 , used to store the most recent tuples)

𝐵 [] TinTiN’s internal array of sorted tuples (one array

per key 𝑘 , used to store tuples contributing to the

relevant contexts of holes)

𝑇 [] TinTiN’s internal array of timestamps and corre-

sponding manipulated timestamps

𝜆 [] TinTiN’s internal array for late arrivals

𝑚𝑎𝑥_𝑡𝑠 highest timestamp seen so far

𝑚𝑎𝑥_𝑡𝑠𝑚𝑎𝑛 highest manipulated timestamp replayed to UDA𝑅

𝑅𝐶𝑡 The relevant context for tuple 𝑡

𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ Sample data that triggers an output from the UDA

Here we focus on the algorithmic description of TinTiN, also

shown in Algorithm 1 (based on the abbreviations and parameters

listed in Table 1). For each key𝑘 , each input tuple 𝑡 with a timestamp

greater than or equal to that of the previous input tuple observed by

TinTiN is forwarded to the UDA. When 𝑡 is observed, TinTiN could

identify 𝑡 as part of the relevant context of a previously observed

hole, if such hole is within time-distance

∑
𝑖 WS𝑖 from 𝑡 (Lemma 5).

Even if no such hole has been observed, 𝑡 could still turn out to

be part of the relevant context for a hole later observed within

time-distance

∑
𝑖 WS𝑖 from 𝑡 (Lemma 5). To be efficient, TinTiN

aims at maintaining 𝑡 only if 𝑡 is part of at least one relevant context.

To do this, TinTiN initially adds each new incoming tuple that is

not a late arrival into a key-dedicated map 𝛽 [𝑡 .𝑘] of size∑𝑖 WS𝑖 . If
a hole is observed while 𝑡 is in 𝛽 [𝑡 .𝑘], then 𝑡 is part of a relevant

context that could be replayed in the future. Only in this case, 𝑡

is moved to a larger key-dedicated map 𝐵 [𝑡 .𝑘], in which relevant

contexts are kept as long as a late arrival within bound 𝐷 could still

be received (L5). If 𝑡 is a late tuple, but it is no more than 𝐷 time

units late compared to the highest timestamp observed so far, 𝑡 is

added to both 𝐵 [𝑡 .𝑘] (L7) and 𝜆[𝑡 .𝑘], a map that stores late arrivals.

If 𝑡 is more than 𝐷 time units late, it is discarded.

Subsequently, the triggering condition is checked for all late

arrivals in 𝜆[𝑡 .𝑘]. For each late arrival for which the triggering

Algorithm 1: TinTiN’s algorithm, upon receiving tuple 𝑡

1 𝑚𝑎𝑥_𝑡𝑠 = max(𝑚𝑎𝑥_𝑡𝑠, 𝑡 .𝑡𝑠) ;
2 if 𝑡 .𝑡𝑠 ≥𝑚𝑎𝑥_𝑡𝑠 then
3 forward 𝑡 to UDA and add 𝑡 to 𝛽 [𝑡 .𝑘 ];
4 if 𝛽 [𝑡 .𝑘 ] contains holes then
5 add 𝛽 [𝑡 .𝑘 ] to 𝐵 [𝑡 .𝑘 ] (excluding duplicates);
6 else if 𝑡 .𝑡𝑠 >𝑚𝑎𝑥_𝑡𝑠 −𝐷 then
7 add 𝑡 to 𝐵 [𝑡 .𝑘 ];
8 add 𝑡 to 𝜆 [𝑡 .𝑘 ]
9 for all 𝑡𝑖 in 𝜆 [𝑡 .𝑘 ] for which𝑇𝐶 holds do
10 replay (𝑅𝐶𝑡𝑖 );

11 if ∃𝑡1 in 𝜆 [𝑡 .𝑘 ] so that 𝑡 .𝑡𝑠 < 𝑡 .𝑡𝑠 −𝐷 then
12 replay (𝑅𝐶𝑡𝑖 );

13 if ∃𝑡𝑖 in 𝐵 [𝑡 .𝑘 ] so that 𝑡𝑖 .𝑡𝑠 < 𝑡 .𝑡𝑠 − (𝐷 + 𝑠𝑖𝑧𝑒 (𝑅𝐶𝑡 )) then
14 remove 𝑡𝑖 from 𝐵 [𝑡 .𝑘 ];
15 if size(𝑇 []) > threshold then
16 replay (𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ)

17 replay(𝑅𝐶𝑡 )
18 𝑡𝑠𝑚𝑖𝑛 =𝑚𝑖𝑛 (𝑡𝑠 ∈ 𝑅𝐶𝑡 ) ;
19 𝑡𝑠𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑡𝑠 ∈ 𝑅𝐶𝑡 ) ;
20 𝑀 = 𝐿𝐶𝑀 (WA[], 𝑃 ) ;
21 find min (𝑧 ∈ Z) : 𝑡𝑠𝑚𝑖𝑛 + 𝑧 ·𝑀 >𝑚𝑎𝑥_𝑡𝑠𝑚𝑎𝑛 + 𝑆𝐷 ;

22 shift 𝑅𝐶𝑡 tuples’ timestamps with 𝑧 ·𝑀 ;

23 for results affected by 𝑡 do
24 store 𝑡 .𝑡𝑠, 𝑡 .𝑡𝑠𝑚𝑎𝑛 pairs in𝑇 [];
25 𝑚𝑎𝑥_𝑡𝑠𝑚𝑎𝑛 = 𝑡𝑠𝑚𝑎𝑥 + 𝑛 ·𝑀 ;

26 send 𝑅𝐶𝑡 tuples to UDA𝑅 in timestamp-order; get results 𝑡0 [];
27 flush old state from𝑇 [];
28 if 𝑅𝐶𝑡 ≠ 𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ then
29 shift 𝑡0 []’s timestamps back;

30 forward 𝑡0 [] to output ;

condition 𝑇𝐶 holds (cf. § 6.3), method replay (L21-30) is invoked.
In this case, 𝑅𝐶𝑡 , i.e. the tuples in the relevant context for the late

arrivals from 𝐵 [𝑡 .𝑘] are forwarded to UDA𝑅 once their timestamp

is changed, while respecting the periodicity P of the UDA as well

as the window advances of the UDA, as described in § 6.4.

Manipulated timestamps for which an affected result can be

produced by the UDA are paired with the original timestamps and

stored in 𝑇 [], to accommodate shifting back the timestamps. If the

size of 𝑇 [] exceeds a pre-defined threshold, 𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ is replayed to

remove stale mappings from the array (L16), as described in § 6.4.

If results are produced by UDA𝑅 , from any 𝑅𝐶𝑡 that is not 𝑅𝐶 𝑓 𝑙𝑢𝑠ℎ ,

the timestamps of the results are then moved back and the results

are forwarded to the end user. All tuples in 𝐵 [] contributing to a

relevant context for which late arrivals will not be received (based

on 𝐷) are replayed to UDA𝑅 and then removed from 𝐵 [] (L14).

Lemma 9. Given a UDA that supports deterministic execution for
timestamp-ordered input streams, Algorithm 1 guarantees D-bounded
eventual determinism when the input is within lateness bound 𝐷 .

Proof. Based on the questions in § 6, we need to ensure that

(i) all relevant contexts for all D-bounded late arrivals are stored;

(ii) after all late arrivals have arrived, the relevant contexts are

forwarded in timestamp-order at least once to UDA𝑅 (which will

run method fire for all relevant window instances); (iii) when
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forwarding relevant context, all tuples in it neither precede other

UDA𝑅-maintained tuples nor contribute to any of the windows

maintained by UDA𝑅 (once the timestamps of the tuples in the

relevant context are changed). Algorithm 1 implies this is achieved

since (i) all late arrivals are stored together with other tuples in the

relevant context they contribute to (L1-5 and L7) as described in

Lemma 4, (ii) tuples are removed from 𝐵 [𝑡 .𝑘] only when no more

late arrivals will be received for the relevant context they belong to

(L14) and (iii) method replay is run at least once (after all possible

late arrivals have been added to it in timestamp order) once its

timestamps have been changed according to Lemma 8 (L14). □

7 Use Case and Evaluation
TinTiN is implemented in Apache Flink [4] and evaluated using a

UDA based on a real-world validation application for Smart Meter

(SM) readings in an Advanced Metering Infrastructure (AMI). 55

days of hourly data from 50.000 SMs are validated in the use case.We

evaluate TinTiN’s output (cf. Definition 4), throughput, processing
latency, logical latency, responsiveness and memory requirements.

Use-case and experiment set-up The SMs periodically send the cu-

mulative energy consumption to the utility’s central servers. The

readings, used for billing (among other things), are validated by

calculating SMs’ hourly consumption (by taking the difference be-

tween two consecutive readings) and verifying that the latter is

positive and bounded by the installed fuses. Invalid readings are

marked and processed to identify patterns indicating hardware

failure (when readings exceeding the bounds are followed by a

negative one within 24 hours). The data validation application out-

puts alerts for matched patterns as well as excessive or negative

consumption values. Hourly readings can reach the utility up to

40 days late. Hence, parameter 𝐷 is set to 40 days. There are two

Aggregates in the query, one withWS 2 hours for calculating the
hourly consumption and one with WS 24 hours, the pattern’s max-

imum length. The size of 𝛽 [] is therefore set to 26 hours (the sum

of the window sizes, cf. § 6.5). Both aggregates have WA 1 hour.

TinTiN and the UDA are evaluated for (sub)sets of increasing size

of the 50K SMs (statistics are given in Table 2), and run on a virtual

server with 4 dedicated 2.6 GHz cores and 16 GB RAM. Throughput

and processing latency results are averaged over 10 runs.

Parameters for TinTiN and baselines for comparison We evaluate

TinTiN with the triggering conditions (TCs) from § 6:

TC-eager (TinTiN-TCE) reprocesses the relevant context for holes

as soon as late data fills them. This approach minimizes logical la-

tency but its output (cf. Definition 4) can contain multiple different

and duplicate results before the final exact result is produced.

TC-lazy (TinTiN-TCL) reprocesses relevant context as soon as

the next in-order reading (i.e. 𝑡 .𝑡𝑠 ≥ 𝜏 , the largest timestamp seen

so far by TinTiN) arrives. This TC reduces the amount of different

and duplicate results at the cost of a higher logical latency.

TinTiN and these TCs are compared against the following baselines:

SortedNoWait (SNW): an ideal baseline fed timestamp-sorted in-

put and thus strictly deterministic. Note SNW cannot be used in

practice (data is not sorted in the real-world application), it is in-

cluded to characterize TinTiN’s and other baselines’ output in terms

of different, duplicate, omitted and exact tuples, and logical latency.

UnsortedWait (UW): the baseline where the allowed delay of the
input data is based on𝐷 (i.e., 40 days). The UDA processes data after

storing it andwaiting for𝐷 time units, incurring D time units logical

latency penalty and large memory requirements but enforcing strict

determinism. UW is essentially the option for system experts that

are not stream processing experts to get accurate results.

UnsortedDiscard (UD): a baseline that discards all late arrivals,
thus not validating all data and omitting final results when there

are late arrivals. This can be the fastest but least accurate, hence not

really usable in systems where accuracy and reliability are required.

Table 2: Data statistics for the used datasets.

Dataset size (keys) 10k 20k 30k 40k 50k

Number of tuples 11.4M 22.8M 34.2M 45.5M 56.9M

Number of late tuples 90.1k 179k 262k 350k 435k

Number of holes 406k 808k 1.22M 1.66M 2.03M

Number of relevant con-

texts with holes

899k 1.79M 2.66M 3.58M 4.41M

Evaluation of quality of output Table 3 compares the output of both

TCs and UD. As expected, TinTiN does not omit any results; UD

omits approximately 10 percent of the exact results. TinTiN-TCL

also gives fewer duplicate results than TinTiN-TCE, since the latter

prioritizes reprocessing as soon as possible. This causes a result to

be produced multiple times if it is affected by more than one hole,

which in turn can result in multiple duplicate results.

Table 3: Output of TinTiN’s TCs and UD compared with
strictly deterministic output (such as from SNW or UW).

Dataset AlgID Exact Omitted Different Duplicate

10k TinTiN-TCE 240 0 0 351

10k TinTiN-TCL 240 0 0 0

10k UD 213 27 0 0

20k TinTiN-TCE 388 0 0 645

20k TinTiN-TCL 388 0 0 5

20k UD 350 38 0 0

30k TinTiN-TCE 518 0 0 2261

30k TinTiN-TCL 518 0 0 37

30k UD 460 58 0 0

40k TinTiN-TCE 729 0 0 2536

40k TinTiN-TCL 729 0 0 37

40k UD 659 70 0 0

50k TinTiN-TCE 850 0 0 2780

50k TinTiN-TCL 850 0 0 39

50k UD 765 85 0 0

Processing throughput Figure 5a shows the processing throughput, i.e.
the number of processed tuples per second, for increasing number

of parallel keys for TinTiN’s TCs, SNW, UW and UD. Due to its

processing overhead, TinTiN’s throughput is lower than that of

SNW’s or UD’s (notice though the latter baselines cannot be used

in production). Nonetheless, it largely improves UW, which cannot

sustain more than 20K keys (since it runs out of memory for larger

number of keys). As expected, TinTiN-TCE’s throughput is lower

than TinTiN-TCL’s since the former prioritizes low logical latency

over the number of times data is potentially reprocessed.
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Figure 5: Evaluation graphs

Processing latency Figure 5b shows the processing latency, i.e. the
difference in wall clock time between the creation time of an output

tuple and the ingestion time of the input tuple that triggers such

output. TinTiN adds approximately 100 ms to the latency when

compared with UD and SNW. Also for this metric, it nonetheless

performs significantly better than UW (not plotted since it is orders

of magnitude larger, 98 and 191 seconds for 10K and 20K keys,

respectively). As discussed in § 6, deploying a fresh UDA𝑅 before

replaying a window is not a viable solution. In our experiments, the

time taken to deploy a fresh UDA𝑅 instance is 1 order of magnitude

larger than TinTiN’s processing latency (between 3 and 4 seconds).

Logical latency Figure 5c shows the logical latency (cf. Definition 4);

it naturally depends on the input data’s lateness, which is drawn on

the plot for convenience. As shown, TinTiN-TCE’s logical latency

is some hours smaller than TinTiN-TCL’s and, for both 𝑇𝐶s, it is

substantially better than UW’s (40 days). Since SM late data often

arrives in batches, the logical latency penalty for TinTiN-TCL is rel-

atively small compared with the throughput gain over TinTiN-TCE.

Responsiveness Figure 5d shows one of TinTiN’s key strengths: its

responsiveness compared to UW (i.e. the time between the arrival

of a late tuple and the processing of the window this tuple belongs

to, cf. Definition 4). Both TinTiN’s TCs enable faster processing

of late data. While TinTiN-TCE prioritizes swift reprocessing over

performance, TinTiN-TCL offers a compromise between fast repro-

cessing of late data and performance. TinTiN reprocesses 90% of

late data within 2 hours and 99.8% within 24 hours. For UW, 95% of

the late data is processed more than 37 days after its arrival.

Memory Figure 5e shows the extra memory (in number of tuples

maintained temporarily in order to process all data) required by

TinTiN and UW. SNW and UD are not shown since they do not

temporarily maintain tuples. The amount of memory required by

TinTiN is two orders of magnitude smaller than UW’s. This is ex-

pected, since UW needs to keep 1920 tuples in memory for every

key (24 hours·40 days·2 aggregates), while TinTiN keeps 26 tuples

per key in addition to the tuples that belong to a relevant context.

Our results show that TinTiN processes on-time data without de-

lays, providing timely results for late data, based on its triggering

condition, thus minimizing utilities’ response time for actions.

8 Related Work
One of the eight requirements for real time stream processing as de-

fined in [19] is resiliency against missing and out-of-order data. We

propose a way for resiliency against missing and out-of-order data,

one of the key requirements for streaming processing [19]. Ear-

lier methods to handle such stream imperfections are slack[1] and
punctuation[16], both methods introduce waiting in order to deal

with out-of-order data which we aim to minimize. Recent work [23]

utilizes a Slack-ScaleGate data structure in order to process out-

of-order input strictly deterministic as long as a logical latency

constraint can be fulfilled, but without guarantees otherwise. Slack

can be combined with speculative processing and buffering for

event processing [17], but this method requires the event processor

to be able to export its internal state in order to be consistent. Our

approach does not require any changes to the application, that is

wrapped in order to be able to process out-of-order events.

The term eventual determinism has earlier been used also in

a different context, i.e. algorithms with a probabilistic and a de-

terministic mode, for problems where randomization is needed
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to break symmetries; processes eventually enter, and stay in, the

deterministic mode [18]. Differently, here, the term is to charac-

terize the output of processing whose input can be influenced by

non-deterministic reorderings due to e.g. varying network delays.

An alternative approach to handle out-of-order data is to enhance

the stateful operators in the streaming queries; [15] is early work

in this direction which allows all stateful operators to store their

state when data is late and to process late data with this stored state.

Unlike ours, this method requires changes in the SPE or the original

streaming application, and does not guarantee determinism.

The dataflow model [2], adopted by SPEs as Apache Flink [4]

and Google Cloud Dataflow [10], allows for multiple evaluations of

window instances, if the late data arrives no later than specified by

an allowed lateness parameter. However the dataflow model cannot

identify holes in the input stream and therefore cannot determine

which window instances can receive late arrivals. For this reason

all window instances need to be stored until the allowed lateness

has expired, leading to excessive memory demands.

Orthogonal work, studying efficient merge-sorting of interleav-

ing streams for strictly deterministic analysis, is presented in [22].

Data stream processing is a goodmatch for smart grid challenges,

as shown in [20, 21] where both applications disregard late data. Yet

since occurrence of late data is common for smart energy meters,

both are examples of applications that could leverage TinTiN.

9 Conclusion and Future Work
We introduce the concept of D-bounded eventual determinism to

control streaming applications’ trade-offs, in result correctness and

quality versus timeliness, in CPS contexts where data fed to such

applications comes out of timestamp order. We also present TinTiN,

a middleware that enforces D-bounded eventual determinism, and

evaluate it for a real-world Smart Grid use case. As shown, TinTiN

induces minimal overhead in logical latency and enables processing

of larger streams of data compared to other state-of-the-art methods.

It enables out-of-order stream processing for 50K keys in parallel,

where the strictly deterministic baseline is bound to 20K.

Future work includes the extension and refinement for different

granularity of eventual determinism, including weak and strong
variations (specifyingwhethermultiple – possibly different – results

can be produced for the same window of tuples) and variations

of use-cases [7, 9, 11]. Since the processing order also impacts the

cost of parallelization techniques for stream processing [5, 13, 23],

it is also worth investigating (i) how TinTiN’s semantics can be

encapsulated in basic streaming operators, in order to leverage SPEs’

distribution and parallelization techniques, and (ii) how TinTiN’s

methodology can benefit distribution and parallelization of queries,

to provide guarantees about their degree of determinism.
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