
Hermes: Enabling Energy-e�icient IoT Networks
with Generalized Deduplication

Christian Göttel
Department of Computer Science

University of Neuchâtel,
Switzerland

christian.goettel@unine.ch

Lars Nielsen
DIGIT, Department of Engineering

Aarhus University, Denmark
lani@eng.au.dk

Niloofar Yazdani
DIGIT, Department of Engineering

Aarhus University, Denmark
n.yazdani@eng.au.dk

Pascal Felber
Department of Computer Science

University of Neuchâtel,
Switzerland

pascal.felber@unine.ch

Daniel E. Lucani
DIGIT, Department of Engineering

Aarhus University, Denmark
daniel.lucani@eng.au.dk

Valerio Schiavoni
Department of Computer Science

University of Neuchâtel,
Switzerland

valerio.schiavoni@unine.ch

ABSTRACT
The Internet of Things (IoT) is connecting a massive num-
ber of devices that generate a growing amount of data to
be transmitted over the network. This tra�c growth is ex-
pected to continue. Generalized deduplication (GD) is a novel
technique to e�ectively compress the data to (a) reduce the
data storage cost by identifying similar data chunks, and
(b) reduce the pressure on the network infrastructure. This
paper presents H�����, an application-level protocol for the
data-plane that can operate using GD as well as classic dedu-
plication.H����� signi�cantly reduces the data transmission
tra�c while e�ectively decreasing the energy footprint, a
key goal in many IoT deployments. We fully implemented
H�����, evaluated its performance using consumer-grade
IoT devices (e.g., Raspberry Pi 4B), and highlighted key trade-
o�s to be considered to manage real-world workloads. Sev-
eral fold to several order of magnitude gains over standard
compressors and deduplication are achievable.

CCS CONCEPTS
• Networks→ Application layer protocols; •Mathematics
of computing→ Coding theory; • Computer systems or-
ganization → Sensor networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3404098

KEYWORDS
IoT, generalized deduplication, energy e�ciency

ACM Reference Format:
Christian Göttel, Lars Nielsen, Niloofar Yazdani, Pascal Felber,
Daniel E. Lucani, and Valerio Schiavoni. 2020. Hermes: Enabling
Energy-e�cient IoT Networks with Generalized Deduplication. In
The 14th ACM International Conference on Distributed and Event-
based Systems (DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3401025.
3404098

1 INTRODUCTION
The increasing adoption and expansion of Internet of Things
(IoT) technologies is leading to a growing number of con-
nected, low-energy Internet-enabled devices. Despite the
imminent introduction of wider-band wireless technologies
(e.g., 5G and beyond), it is clear that the pressure on the
network will continue to increase. Data compression [5] is
an interesting solution given the compression potential of
IoT-generated data. Figure 1 shows the compression gain
(high is good) on ambient water and energy [1, 2].

E�cient compressors are usually too computationally in-
tensive [3] and memory-eager for IoT devices. On the other
hand, lightweight, memory-e�cient approaches tend to have
poorer compression performance [12]. Moreover, many IoT
applications rely on small data packets and compress data on
a per packet basis due to memory limitations, which limits
the compression potential of traditional algorithms [11]. The
compression gain in Figure 1 for LZW [10] and DEFLATE [3]
decreases dramatically as packets become smaller.

Data deduplication (DD) is a known scheme to eliminate
redundant data. Generalized deduplication (GD) [9] is a re-
cently introduced scheme to reduce the cost of storage not
only by �nding equal data chunks, but also by �nding similar

133

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada C. Gö�el, L. Nielsen, N. Yazdani et al.

Figure 1: Compression ratio for real-world ambient wa-
ter and energy data set (higher is better).

data chunks. The compression ratio of IoT data for DD and
di�erent schemes of GD [4] in Figure 1 shows that GD can
not only outperform DD, but also LZW and DEFLATE for
small packet sizes.
This paper introduces H�����, a protocol and its imple-

mentation for data transmission reduction in IoT networks,
especially suited for resource-limited nodes. H�����’ design
is inspired by and expands on the schemes proposed in [11].
In H�����, nodes share a common (and growing) data pool
at the sink node, typically a Cloud- or Edge-based device.
Nodes bene�t from reduced tra�c by contributing to the
data pool without direct interactions between nodes. We
implemented and experimentally evaluated H�����’ perfor-
mance by micro- and macro-benchmarks on Raspberry Pi 4B.
We show that GD can outperform DD, LZW and DEFLATE.
A full version of this paper is available at [4].

2 BACKGROUND
Generalized deduplication (GD) [9] is a lossless data com-
pression approach that eliminates equal and similar data
chunks. This is achieved without comparing directly to pre-
vious chunks, but rather using a transformation function to
systematically cluster similar data. GD splits data into a se-
ries of equal-sized smaller chunks and maps each chunk onto
a basis-deviation pair by applying a transformation function.
As transformation function, an error-correcting code (ECC)
can be used. Each basis is saved exactly once and assigned a
�ngerprint, e.g., using SHA-1 or CRC32. Rather than saving
the chunk, GD stores a �ngerprint-deviation pair. It should
be noted that DD is a special case of GD with deviation zero.

GD for e�cient data transmission.GD can also reduce
data transmission in a lossless manner [11]. Source nodes ap-
ply GD bymapping chunks to a basis-deviation pair and send
the basis’ �ngerprint and the deviation to the sink nodes.
Sink nodes check for the �ngerprint and send back an ac-
knowledgement, if it is available. The basis and deviation
can then be erased from source nodes’ memory. If the basis

Table 1: Message types for the H����� protocol and re-
lation with the node classes.

Message Type basic dedup. gen. dedup.
Response 3 3 3

Data 3 � �

Deduplication 7 3 7

Deduplication data 7 3 7

Gen. deduplication 7 7 3

Gen. deduplication data 7 7 3

is not available at a sink node, the sink node requests the
missing basis from the source node. The source node sends
the basis, and awaits an acknowledgement from the sink
node to delete the basis and deviation.

Transformation function. Hamming codes [7] are lin-
ear ECCs that can be used for our mapping [8]. By applying
the decoding function of the Hamming codes to the codeword
(original chunk in our case) we obtain a message (a basis in
our case). The deviation carries the information about the
di�erence between the codeword and the error-free codeword.
The latter is created by encoding the basis with the Ham-
ming code. Hamming codes can correct one bit errors, which
means that codewords are at most one bit away from the
error-free codewords. The location of the bit is speci�ed in a
syndrome vector which represents the deviation in our case.

3 HERMES ARCHITECTURE
Assumptions: (1) all nodes use the same �ngerprint length;
(2) all GD nodes use the same transformation con�guration;
and (3) all deduplication nodes use the same chunk length.

A distributed deployment of H����� uses source, sink and
intermediate nodes. Sources inject data into the network,
while sinks only ingest data without further retransmissions.
An intermediate node is any node between a sink and source.

Nodes handle messages according to their class: basic, DD
and GD. Basic nodes transmit messages without any process-
ing, while DD and GD nodes perform DD and GD locally
on the node, respectively. The node type determines the
message type it handles as in Table 1. For example, a ba-
sic node acting as a source sends only raw data using the
Datamessage type. Response messages for success, acknowl-
edgement, or failures are sent to the previous node in the
communication route.
A GD node can send two types of messages: (1) a Gen.

deduplication message with the (basis �ngerprint, devia-
tion) pair, and (2) a Gen. deduplication data message,
which sends the basis. DD nodes follow a similar struc-
ture but the Deduplication messages contain the chunk’s
�ngerprint and the Deduplication data messages con-
tain the original chunk. The Data message payload is pro-
cessed using DD or GD according to the node’s type. Gen.

134

Hermes: Enabling Energy-e�icient IoT Networks
with Generalized Deduplication DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Figure 2: Compression ratio for di�erent schemes

deduplication data or Deduplication data messages
are transmitted when a receiving node responds with a New
fingerprint message. This indicates the basis’ �ngerprint
has not been seen before in the receiving node. Naturally,
sink nodes maintain a growing record of previously seen
�ngerprints and their basis. Intermediate nodes can maintain
a similar record, but limited to the �ngerprints successfully
communicated to a sink node.

4 EVALUATION
Testbed.Our experiments are deployed over a switched clus-
ter of 16 Raspberry Pi 4B1 featuring a Raspberry Pi PoE-HAT2

to enable 802.3af Power-over-Ethernet [6] by an Ubiquiti Net-
works UniFi USW-48P-750 switch connected over Gigabit
Ethernet. Raspberry Pis are used as source nodes and are
connected to a Dell PowerEdge R330 server acting as sink
node.

Each Raspberry Pi is running the beta bootloader 2019-12-
03 and Raspian Buster Lite (2020-02-13) which are installed
on a 32GiB SanDisk Extreme microSDXC UHS-I card. The
clocks of all machines are synchronized usingNTP in order to
relate the power consumption to the statistics of a benchmark
run.

Power Measurements. The power measurements are
gathered using two techniques: (1) PowerSpy2. The Alciom
PowerSpy23 is a power analyzer connected between a power
plug and a power adapter. We use the PowerSpy in real-
time mode, where it streams periodic measurements with
Bluetooth v2 at a frequency of 50Hz.(2) UniFi Switch. The
UniFi switch provides an access protected API reachable over
a local telnet connection to query the PoE status of its ports.
Using an ad-hoc expect script4 we periodically gather PoE
measurements at a frequency of about 8Hz.

1https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
2https://www.raspberrypi.org/products/poe-hat/
3https://www.alciom.com/en/our-trades/products/powerspy2/
4https://core.tcl-lang.org/expect/index

1 2 4 8 16 32 64 256 1024 4096
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Chunk size [B]

En
er

gy
 [µ

J/
bi

t]

DD
GD

(a) Energy per bit

1 2 4 8 16 32 64 256 1024 4096
10-1

100

101

102

103

Chunk size [B]

Co
m

pr
es

si
on

 ra
tio

DD
GD

(b) Compression ratio

1 2 4 8 16 32 64 256 1024 4096
0

10

20

30

40

Chunk size [B]

Th
ro

ug
hp

ut
 [M

bi
t/

s]

DD
GD

(c) Throughput

1 2 4 8 16 32 64 256 1024 4096
100

101

102

103

104

Chunk size [B]

En
er

gy
 [n

J/
bi

t]

raw
DD
GD

(d) Energy per bit

1 2 4 8 16 32 64256 1024 40961
100

101

102

103

104

Chunk size [B]

By
te

s
se

nt
 [M

iB
]

raw
DD
GD

(e) Network tra�c

1 2 4 8 16 32 64 256 1024 4096
0

100

200

300

400

500

600

Chunk size [B]

Th
ro

ug
hp

ut
 [M

bi
t/

s]

raw
DD
GD

(f) Throughput

Figure 3: Micro- (a, b, c) and macro-benchmark (d, e, f)
on Raspberry Pi 4B cluster.

Reduction of interferences.The Raspberry Pi is attached
to the PowerSpy during the micro-benchmark. With an aux-
iliary machine we simultaneously monitor the Raspberry Pi
over a serial channel (USB-to-UART) and record PowerSpy
measurements. No other peripherals were attached to the
Raspberry Pi except for Ethernet and the UART GPIO pins in
order to keep the static power consumption of the Raspberry
Pi as low as possible and to avoid power interference from
other peripherals.

Synthetic dataset.We will show our best case scenario
using synthetic data sets. We developed a parameterizable
generator for a synthetic dataset to create a speci�c number
of (unique) bases and to derive a speci�c number of chunks. A
basis can be easily generated by selecting a random number
considering the basis’ length. The error-free codeword is
obtained by encoding the basis. Chunks can then be derived
by �ipping a random bit.

Compression ratio. Figure 2 compares the compression
ratio of our technique based on GD using CRC32 �nger-
prints with two standard compression algorithms, DEFLATE
and LZW, considering the synthetic data sets. We apply all

135

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada C. Gö�el, L. Nielsen, N. Yazdani et al.

schemes on each chunk individually. As Figure 2 shows, nei-
ther DEFLATE nor LZW compress the data, only DD slightly
compress data for larger chunk sizes. GD achieves signi�cant
compression ratios for chunk sizes beyond 8 B. Compression
ratios of 334 and 668 for chunk lengths of 2048 and 4096 B
can be achieved compared to 1.58 for DD.

Micro-benchmark. Our set of micro-benchmarks are
shown in Figure 3 on the synthetic datasets. We show the
di�erent trade-o�s in terms of chunk-size, energy per bit,
compression ratio and throughput. Results show that energy
per bit performance of GD is comparable to DD even con-
sidering the added transformation computation. For chunk
sizes of 8 B and above, GD compresses the data by orders
of magnitude better than DD due to the large number of
chunks matched to each basis. Finally, the achieved through-
put maxes out at 30Mbit/s for a single thread. The through-
put includes the following operations: reading the data from
memory, applying the compression algorithm and looking
for �ngerprints in memory to check the availability of the
�ngerprint for DD and GD. In a real world scenario, a source
node only needs to apply the compression algorithm and it
is the sink node which looks for the �ngerprint. Thus, we
expect a higher throughput in real deployments.

Macro-benchmark. In the macro-benchmark, we evalu-
ate raw data chunks, DD, and GD transmission methods as
combined statistics for the Raspberry Pi cluster. Although
our prototype implementation has multi-threading capabil-
ity, we decided to use only two threads to be comparable
to the micro-benchmark. We use one thread to handle the
networking and a second thread to do the necessary trans-
formations and look-ups. Figure 3d shows that for smaller
chunks the energy per bit is higher. This is due to the inac-
curacy of the measurement done with the UniFi switch. The
UniFi switch has a much lower time resolution to update the
PoE status statistics, which we observed to be around 4 to 5
seconds, thus lowering the accuracy and resolution of our
measurement. With large chunk sizes (larger than typical
IoT ones), the energy increases for GD. Most importantly,
the network tra�c generated for the di�erent methods in
Figure 3e is reduced signi�cantly with GD. As seen in the
micro-benchmark, the macro-benchmark also shows an op-
timal throughput between chunk sizes of 2 and 512 bytes.
Approaching 1024 KiB, we recognize a signi�cant drop in
throughput for GD we assume is due to hardware limitations.

5 CONCLUSION
This work proposed and evaluated a new protocol (H�����)
for data compression acrossmultiple sources using the emerg-
ing concept of generalized deduplication. For small data pack-
ets, our evaluations show that GD signi�cantly outperforms
standard compression approaches e.g., LZW, and DEFLATE.

Additionally, we demonstrated that H����� under ideal con-
ditions can provide orders of magnitude better compression
than DD and even LZW/DEFLATE. We achieve this with a
small added computational overhead as shown in deploy-
ments with Raspberry Pi model 4B. Future work will focus
on developing transformations that are more data-aware and
on carrying out large-scale deployments of H����� with
expanding its capability to packet loss correction.

ACKNOWLEDGEMENTS
This work was partially �nanced by the SCALE-IoT Project
(Grant No. 7026-00042B) granted by the Independent Re-
search Fund Denmark, by the Aarhus Universitets Forskn-
ingsfond (AUFF) Starting Grant Project AUFF- 2017-FLS-7-1,
and Aarhus University’s DIGIT Centre. The research leading
to these results has also received funding from the European
Union’s Horizon 2020 research and innovation programme
under the LEGaTO Project (legato-project.eu), grant agree-
ment No 780681.
REFERENCES
[1] 2013. Indian Dataset for Ambient Water and Energy. http://iawe.

github.io/ Accessed: 2020-02-03.
[2] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava.

2013. It’s Di�erent: Insights into home energy consumption in India.
In ACM Workshop on Embedded Syst. for Energy-E�cient Build. 1–8.

[3] L. Peter Deutsch. 1996. DEFLATE Compressed Data Format Speci�cation
version 1.3. RFC 1951. RFC Editor. http://www.rfc-editor.org/rfc/
rfc1951.txt http://www.rfc-editor.org/rfc/rfc1951.txt.

[4] Christian Göttel, Lars Nielsen, Niloofar Yazdani, Pascal Felber, Daniel E.
Lucani, and Valerio Schiavoni. 2020. Hermes: Enabling Energy-e�cient
IoT Networks with Generalized Deduplication. arXiv:2005.11158

[5] Abdallah Jarwan, Ayman Sabbah, and Mohamed Ibnkahla. 2019. Data
transmission reduction schemes in WSNs for e�cient IoT systems.
IEEE Journal on Selected Areas in Comm. 37, 6 (2019), 1307–1324.

[6] Galit Mendelson. 2004. All you need to know about Power over Eth-
ernet (PoE) and the IEEE 802.3 af Standard. Internet Citation,[Online]
Jun (2004).

[7] Jorge Castiñeira Moreira and Patrick Guy Farrell. 2006. Essentials of
error-control coding. John Wiley & Sons.

[8] Lars Nielsen, Rasmus Vestergaard, Niloofar Yazdani, Prasad Talasila,
Daniel E Lucani, and Márton Sipos. 2019. Alexandria: A Proof-of-
concept Implementation and Evaluation of Generalised Data Dedupli-
cation. In IEEE Global Communications Conference (GLOBECOM).

[9] Rasmus Vestergaard, Daniel E Lucani, and Qi Zhang. 2019. Generalized
Deduplication: Lossless Compression for Large Amounts of Small IoT
Data. In European Wireless Conference. IEEE.

[10] Terry A. Welch. 1984. A technique for high-performance data com-
pression. Computer 6 (1984), 8–19.

[11] Niloofar Yazdani and Daniel E Lucani. 2019. Protocols to Reduce CPS
Sensor Tra�c using Smart Indexing and Edge Computing Support. In
IEEE GLOBECOM - Workshop on Edge Comp. for Cyber Phys. Sys. IEEE.

[12] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (May
1977), 337–343. https://doi.org/10.1109/TIT.1977.1055714

136

