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ABSTRACT
The production of large amounts of sensitive data raises grow-
ing concerns on confidentiality guarantees. Considering this, it is
natural that data owners have an interest in how their data are
being used. In this work, we propose Data aNd Application Track-
ing (DNAT), a trustworthy platform for tracking the executions
of applications over sensitive data in untrusted environments. For
traceability purposes, we use blockchain and smart contracts, and
to guarantee execution confidentiality and, especially, enforce that
operations are appropriately logged in the blockchain, we use Intel
SGX. Experiments show that tracking costs on Ethereum varies
from 1 to 61 cents of a US dollar, depending on the operation and
urgency for consolidation. The time cost of confidential execution
is associated with the SGX overhead. It increases non-linearly ini-
tially but has a linear growth rate when data and application size
gets much higher than the available enclave page cache (≈ 93 MB).
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1 INTRODUCTION
The high-tech world we live in is transforming conventional peo-
ple into data producers. Mobile applications, IoT devices such as
smartwatches and other wearables are continuously collecting and
processing data to ease our daily tasks. The data we produce is
also valuable for big data and advertisement companies, which
may use our preferences and opinions to influence individuals of
a given profile into taking some action that may draw them some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3404097

advantage [12]. In addition to its value, some of these pieces of
information are sensitive and should be kept confidential. However,
throughout the last decade, there were several major cases of data
leakage.

Among themost famous data leakage scandals are Facebook’s [22]
and Uber’s [21], where personal data from 57 million Uber’s ac-
counts and from 87 million Facebook’s users were breached. The
forces of market impose a natural punishment to these companies:
Uber’s valuation dropped from $68B billion to $48 billion, and $100
billion was knocked off from Facebook’s valuation. However, as
data breaches are not new or a temporary issue, the European
community led a movement towards the legal regulation of these
cases.

Among the goals of the General Data Protection Regulation
(GDPR) is removing ambiguity from common laws that were not
primarily thought to address data leakage cases. It clarifies its scope,
quantifies the penalties, specifies that terms of consent must be
intelligible and easily accessible, defines that data can be erased
anytime, and clears out that data subjects may have access to which
purposes their information is being used and by whom [5]. In other
words, the access right to personal data means tracking which
application (and consequently which entity) is consuming specific
data. Furthermore, personal data is not the only type of sensitive
data; from another perspective, applications considered strategic
for some companies could also be regarded as sensitive data.

With these issues in mind, we propose the Data aNd Applica-
tion Tracking (or DNAT, for short), a reliable platform for trace-
able executions of applications over data. The main difference from
DNAT’s strategy to standard data policies practiced by some com-
panies is that the actions performed on the former can be audited
in a transparent and tamper-proof fashion. Such a feature is an
outcome of the combined utilization of the blockchain with trusted
executions environments, technologies that can attest the integrity
of log records, input data, and application.

Assets that retain intellectual property (applications) or sensitive
information (data) typically need to be confidential due to their
inherent value. When required, the integrity and confidentiality of
applications can be guaranteed by Trusted Execution Environments
(TEE) — an environment that provides guarantees that application
execution will not deviate from the expected behavior. Nevertheless,
it is not trivial to ensure that an application for which the code is
unknown will not leak data during its processing.

If data is confidential, it becomes necessary to ensure that the
application is not malicious. If application confidentiality is not
a critical issue, such verification could be carried out by the data
owner or mediated by some trusted third party with access to the
source code. This third party then checks if the application complies
with privacy and data management standards. Then, DNAT ensures
that application integrity was not compromised before usage.
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When data is not sensitive, and thus, privacy is not a concern,
confidential applications (i.e., applications whose source code can
not be publicized) could be used without integrity verification but
still require logging. Finally, if the application is confidential, and
data is sensitive, mitigation can be performed by limiting what can
be done inside the trusted environment. For instance, if the purpose
of a confidential application is to process sensitive data in a cloud
environment to produce results for the data owner, preventing
communications would suffice to protect data confidentiality even
with unknown code. In this work, we focus on the first and second
cases, where either the application or data confidentiality is critical.

We instantiate our platform with a TEE from Intel, the Software
Guard eXtensions (SGX) [13]. SGX is endowed with protected mem-
ory areas named enclaves, where application and data reside during
execution. Enclaves can protect data and code against disclosure
and modification by non-authorized third parties, and even from
high privileged software such as the operating system and hypervi-
sors. In order to provide confidentiality during storage, data and
application are stored encrypted, and the decryption keys are sent
to a trusted Key Management Service.

Data traceability is addressed by using blockchain and smart con-
tracts. The main feature of a blockchain is that every data recorded
is considered to be immutable due to the computational require-
ments to subvert the chain. The smart contracts are the interface
of the blockchain and, in DNAT, they are used to grant access right
to a given piece of data from a specific application. This access is
granted by recording a tuple < application,data, requester > on
the blockchain, and such a registry is used to retrieve the decryp-
tion keys. Note that these decryption keys are only provided to the
TEE after an attestation of the code loaded in the enclaves.

To show the applicability and feasibility of DNAT, we performed
experiments in scenarios within the health care context. We con-
sider as use case the application of widely known machine learning
(ML) models such as logistic regression, support vector machine,
and random forest. The chosen application was applied to a pair of
open health care datasets [8, 18] and a sensitive one [14]. However,
the DNAT platform could also be applied in contexts other than
health care, contexts in which confidential execution is desired due
to the sensitivity of the data and typical privacy approaches, which
transforms and discards information, are not adequate.

The experiments show that tracking and confidentiality are
achieved at some cost. Because tracking information is recorded on
the blockchain, the DNAT user will pay a fee to have the operation
consolidated. In our experiments, this fee varied from less than 1
cent to 61 cents on the dollar, depending on the operation and on
the desired time of consolidation. When it comes to the confidential
execution, in addition to the computing resource costs of the ML
training, there is a time cost associated with the TEE overhead and
proportional to the workload size. Even with the costs described
above, some applications will deem worthful to pay such values to
be executed confidentially and to restrict access to sensitive data to
a protected environment and in an auditable fashion.

The rest of this paper is organized as follows. The next section
describes the theoretical background necessary to understand the
fundamental aspects of the DNAT platform and presents the threat
model. Section 3 presents the architecture and provides an overall
description of each component. The workflow of the operations

available to end-users is described in Section 4. A security analysis
is provided in Section 5. In Section 6 we present the experiment
design. Evaluation results and their corresponding analysis are
presented in Section 7. The most related works are discussed in
Section 8. Finally, in Section 9, we highlight the main conclusions.

2 BACKGROUND
2.1 Attestation and Secure Containers
To ensure integrity and confidentiality, Intel SGX offers local and
remote attestation features [2], which can be used by a third part to
ensure that the expected chunk of code is being executed inside an
enclave, on an authentic SGX-capable server. Nevertheless, using
SGX is not a straightforward task. Some limitations, such as the
inability to directly issue system calls, make the learning curve steep.
In this work, we use SCONE [3], a Secure Container Environment
that uses SGX to protect containerized processes. SCONE simplifies
the process of porting applications to SGX and also offers tools for
integration with Docker and Kubernetes.

To use SCONE in a remote environment, a client enables the
creation of configuration files that spawn containers and prepare
the environment for secure communication with them. During
container startup, sensitive configuration, such as credentials, are
securely passed to the application (injected into the application en-
clave either as environment variables or command line parameters).
The passing of confidential information is done with the help of
the Configuration and Attestation Service (CAS). The CAS is an
SGX-based component that stores the confidential information and
releases this data only to parties that have been attested, which
has proved that the code running is the expected one. In a scenario
with an application running in a remote environment, the CAS
can run both as a service local to the infrastructure (e.g., within a
cloud provider) or as an external service, on the users’ premises.
The connection between the CAS and the running applications is
done through a second service, the Local Attestation Service (LAS),
which runs on every host.

2.2 Blockchain and Smart Contracts
In this work, we use Ethereum [9], a blockchain-based platform
that supports smart contracts. Contracts are persisted in the block-
chain and thus are comprised of a set of immutable and publicly
auditable functions. Transactions performed by any Ethereum user
can trigger these functions, and more importantly, they can change
the state of the blockchain by appending information on it.

It is crucial to notice that there is a cost associated with trans-
actions handled by a contract. The user firing a smart contract
transaction must pay for some miner to execute it. This price is a re-
ward for its expenses with memory, storage, and energy. Therefore,
each transaction must carry the gas price and start gas fields. Gas
price is the fee to pay the miner per computational step, and thus
it affects the time it takes to have a transaction included in a block
on the chain since miners typically prioritize transactions yielding
higher revenues. Start gas is the total gas that the user firing such
contract execution is willing to pay. The total gas is necessary to
avoid infinite loops, possibly caused by bugs, from spending all the
funds of an externally owned account.
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Most of the blockchain applications try offloading from the block-
chain by keeping on-chain only metadata and the essential and
mandatory computation. In addition, if one is interested just in
examining the contents of the blockchain, she can interact with an
Ethereum Provider, without smart contract mediation. Providers
are nodes containing all the blockchain (full node) or at least the
headers of the blocks (light nodes). Lightweight nodes are, in some
cases, sufficient due to their capability of checking the existence of
an event by using a Bloom filter (BF) data structure. Since a BF is a
cheap form of storing information, we also use such structure to
diminish the storage costs in the smart contract of DNAT.

2.3 Threat Model
We assume an adversary that controls the machines that runs DNAT.
They could, for instance, install arbitrary software. The goal of the
attacker is to steal encryption keys or data that is being processed
in the machines. Nevertheless, we assume that all Intel SGX basic
operations are bug-free. This assumption also includes the toolset
provided by the SCONE platform used in our system. In addition,
due to Intel SGX’s attestation process, code has its integrity guar-
anteed by an SHA256 hash. We also assume that the attestation
process cannot be circumvented.

Side-channel attacks are also not in Intel’s threat model. To
address this issue we could use an approach similar to the one
proposed by Oleksenko et al. (2018), which has been validated also
with the SCONE runtime. Roughly, the idea resides on the fact that
page table and L1/L2 cache-timing side-channel attacks typically
rely on an abnormally high rate of asynchronous enclave exits or
adversary-controlled sibling hyperthreads. In this case, occupying
the hyperthreads with trusted threads (e.g., sibling threads for the
same application or even to a helper enclave thread that is created
simply to occupy the hyperthread) and using a monitor for enclave
exit rates has been shown to be effective against L1/L2 and page
table attacks. As Varys is not yet enabled in release versions of
SCONE, our current experiments do not consider this protection,
but its future addition would not require any change in the archi-
tecture or application. In the meantime disabling hyperthreading
should reduce the attack surface.

With respect to the blockchain, logs recorded on it are considered
immutable due to the difficulty of creating a longer Ethereum chain.
To avoid obtaining corrupt information from the blockchain, we
assume that Providers used in DNAT are a trustworthy interface to
the ledger. Providers can be authenticated by their TLS certificates.
In addition, attacks to compromise the availability of the blockchain,
such as distributed denial of service attacks, are deemed ineffective
due to the high level of distribution of the blockchain.

3 ARCHITECTURE
In this Section, we describe the proposed architecture for DNAT,
which is illustrated in Figure 1.

An asset owner oi , where i identifies the owner, willing to reg-
ister an asset αi ,h with content hash h, be it a dataset δi ,h or an
application πi ,h , is required to provide a manifest µi ,h . The mani-
fest µi ,h is a text document that will be signed by oi , and describes
the properties and usage of αi ,h . For δi ,h , µi ,h may also contain
a set of applications P | πj ,h′, j , i ∧ h′ , h, that could consume

Figure 1: Architecture of the platform.

δi ,h without compensation, but with logging. We name this list the
asset’s whitelist.

The Client component is the interface for interacting with the
platform. It allows asset registration, listing and tracking, acquisi-
tion of access rights, request of application execution, and revoca-
tion of assets’ availability.

To enforce tracking, we leverage the Blockchain component, in-
stantiated with Ethereum. We take advantage of its decentralized
nature, immutable log records for execution requests, and compen-
sation of transactions. Furthermore, the blockchain stores the DNAT
Smart Contract, which provides the interface for the operations that
can change the state of the ledger: registration, acquisition of access
rights, and asset revocation. These operations are consolidated by
publishing (extra) information about the assets on the blockchain.

The Provider is the entry point for all operations performed in
the blockchain. The Provider may manage its own Ethereum node
or forward requests and transactions to a public node. In DNAT,
oi specifies on µi ,h her trusted Provider(s) to check compensation
before allowing the usage of αi ,h ; execution only proceeds upon
consensus between the Providers from the dataset and application.

The Object Storage is responsible for storing the objects of assets,
which are identified by their hash. In this work, we consider the
Interplanetary File System (IPFS) as the Object Storage. Later, the
hashes are used to recover data from IPFS nodes when execution
is requested. Also, due to the sensitive nature of the data, it is
recommended to encrypt the data before sending it to IPFS nodes.
Therefore, even if an attacker gets a hold of the hash that identifies
the data on IPFS, the attacker does not have the appropriate key to
decrypt the retrieved content.

From the trusted execution point of view, we propose the Ex-
ecutor. This component is responsible for executing πi ,h over δj ,h′ ,
where i may be equal or different from j and h , h′. When a user
demands an execution, transactions that will eventually persist an
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event on the blockchain are triggered. The Executor, then, receives
this event containing the information about that execution, includ-
ing the address of the user requesting it, and the hashes of the assets
to be used. As seen in Figure 1, the Executor is an SGX machine.
Thus, it has the proper capabilities to perform secure processing of
sensitive data, guaranteeing its integrity and confidentiality.

The Executor also inspects the ledger history to check whether
the permissions of execution are properly recorded. This component
runs inside an enclave using the SCONE framework. Therefore, the
trusted part of the Executor is the core SGX element of the proposed
solution. It consists of a module executing inside an enclave which
is responsible for decrypting the data recovered from IPFS and
adequately executing the assets.

Currently, DNAT supports applications written in the Python
programming language. To make use of the SGX capabilities of the
Executor, a special third-party interpreter is used, scone-python [19],
which allows for the execution of Python code inside SGX enclaves.
When executing scone-python, the Executor component should be
attested in order to obtain the secrets entrusted to it by the asset’s
owner, and then, it becomes able to execute the application with
the corresponding dataset properly.

We also assume there is a service external to this framework act-
ing as a Key Management System, which here we instantiate with
the SCONE CAS technology. CAS is a component of the SCONE
framework responsible for storing secrets and handing it back to the
querying code if it passes attestation. This means that if a service
communicates with the CAS to ask for a secret, the service only
passes on the information if the one requesting it can be trusted
(i.e., has the expected MREnclave and runs with a permissioned
CPU in the adequate execution mode). CAS can be a service run-
ning in a cloud provider (supporting the SCONE framework), or a
service maintained by a third-party (e.g., the asset owner himself).
In summary, the CAS associates an application identifier and an
MREnclave to a set of secrets.

4 WORKFLOW OF OPERATIONS
The DNAT platform provides six operations: i) asset registration; ii)
acquisition of assets’ access rights; iii) application execution; and
iv) assets’ catalog; v) asset’s usage tracking; vi) asset’s publication
revocation. The workflow of all these operations is described next.

4.1 Asset Registration
The workflow of the asset register feature is illustrated in Figure 2.

Figure 2: Asset registration operation.

Before submitting an asset registration transaction to the smart
contract, some operations must be done. First, the Client compo-
nent generates a symmetric key κi ,h and uses it to encrypt αi ,h .
For the key, i refers to the user, as before, and h to the hash of
the asset that was encrypted with that key. Assume the function
ϵ(αi ,h,κi ,h ) returns the encrypted asset αi ,h with key κi ,h . Then,
ϵ(αi ,h,κi ,h ) is sent to the IPFS Storage (operation ii), and κi ,h along
with additional information about trusted Executors are sent to the
SCONE CAS (operation iii). The response given by IPFS is the hash
of ϵ(αi ,h,κi ,h ), which is used as a unique identification of it. Thus,
the hash of ϵ(αi ,h,κi ,h ) may be used to obtain information about
αi ,h in DNAT.

The register transaction submitted to the smart contract (op-
eration iv) requires a few arguments. Due to the sensitiveness or
intellectual property of some assets, the owner must define a com-
pensation value, in DNAT measured in Wei (the smallest unit of
Ethereum cryptocurrency). Furthermore, for δi ,h , free permission
can be granted to specific applications. For instance, it could be in
the interest of the data owner (oi ) to allow open-source applications
to compute quality metrics, such as statistical parity difference, that
in turn could be used by arbitrary users to comprehend better the
properties of δi ,h (before actually acquiring it). In this case, oi must
provide the hashes of these permissioned applications to identify
them and grant free access to δi ,h . Due to the blockchain storage
cost, these hashes are stored in a 256-bit BF structure in the smart
contract. The content of the BF bit array is generated at the Client
side to decrease the amount of computation performed over the
smart contract.

Another valuable property is the asset integrity. The register
transaction also carries an SHA-256 hash of αi ,h (other than the
hash of ϵ(αi ,h,κi ,h )), which is used for integrity verification of αi ,h
before execution. All the information about αi ,h is described by
the manifest µi ,h generated by the Client with all the information
provided by oi . The manifest is publicly available in the IPFS (oper-
ation ii) so that potential consumers can check asset’s information
before the acquisition of rights. The hash of µi ,h is sent to the
smart contract and, as the hash of ϵ(αi ,h,κi ,h ) is used to retrieve
ϵ(αi ,h,κi ,h ) from the IPFS, the hash of µi ,h is used to retrieve µi ,h .

In summary, the transaction sent to the smart contract contains
the following parameters: asset name, value, hash of ϵ(αi ,h,κi ,h ),
hash of µi ,h , hash of αi ,h , asset type (application/data), and the
pre-computed BF bit array for the whitelist.

4.2 Acquiring Assets’ Access Rights
The acquisition of assets’ access rights is depicted in Figure 3.

Figure 3: Acquisition, catalog, tracking, and revocation
workflow.
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To acquire the rights to execute πi ,h over δj ,h′ , where i may be
equal or different from j and h , h′, a final user has to utilize the
Client to send a transaction to an Ethereum Provider, which is the
entry point of smart contracts. The user needs to provide the hash
of ϵ(πi ,h,κi ,h ), the hash of ϵ(δj ,h′,κj ,h′), its Ethereum credentials,
and a sufficient amount of Wei to compensate oi and oj . Once the
transaction is mined, i.e., selected by miners to be processed and
included in the Ethereum Blockchain, the final user could request
any cloud provider supporting the DNAT Executor component to
run πi ,h over δj ,h′ . Also, it is recommended that the final user pins
the acquired assets, even though it is encrypted, in an own IPFS
node, in order to avoid its deletion after compensating oi and oj .

In DNAT, some applications are allowed to use some datasets
without compensation. However, even in this case, it is necessary to
explicitly persist the access permission on the blockchain, for track-
ing purposes. In this sort of transaction, a flag indicates if the final
user intends to acquire the access right to δi ,h without compensa-
tion. If this flag is set, then the smart contract verifies if the BF of δi ,h
contains the desired application (πj ,h′ ) by means of hashing, and
in positive case, it persists the tuple < δi ,h, πj ,h′, final_user, free >
on the event log history. Finally, note that the BF may yield false
positives, returning that πj ,h′ could consume δi ,h for free when
the πj ,h′ does not have this free permission. This problem is solved
within the application execution workflow.

4.3 Application Execution
The steps involved in the execution of an acquired application over
an acquired dataset are depicted by Figure 4.

Figure 4: Application execution workflow.

The first task is performed in the untrusted part of the Execu-
tor component, and it consists in retrieving the ϵ(δi ,h,κi ,h ) and
ϵ(πj ,h′,κj ,h′) from the IPFS (operation iii). Then, the trusted part of
the Executor component, the one running inside the SGX enclave,
is launched twice, because the secrets of different assets can not
be handed simmultaneously to the same SCONE session. In each
of these two executions, the CAS delivers the secrets of each asset
along with a fresh CAS generated key, which is specific to δi ,h and
πj ,h′ . Let us call such a key κi j ,hh′ . These secrets, i.e., κi ,h , κj ,h′ and
κi j ,hh′ , are only released upon CAS attestation of the Executor com-
ponent. Once both assets have been re-encrypted with κi j ,hh′ , the

Executor is launched once again, and this time it will be able to run
ϵ(πj ,h′,κi j ,hh′) over ϵ(δi ,h,κi j ,hh′) because, after CAS attestation,
it will be granted access to κi j ,hh′ .

Application execution proceeds as follows. The trusted part of
the Executor searches for the specific tuple< δi ,h, πj ,h′, final_user >
in the Ethereum blockchain (operation vi). This request is directed
to a public trusted Ethereum Provider node such as Infura [6]. Note
that the tuple is recorded on the blockchain event log history. The
Executor component only proceeds with the application execution
if the proper tuple is persisted on the ledger.

There is a particular case where the application’s rights can be
granted for free, and this is explicitly logged in the event history. On
the smart contract side, this is done with the aid of a BF. However,
the BF may yield false positives (either intentionally or not). The
false positive would, for instance, allow an attacker oj to consume
δi ,h for free by inserting a proper nonce in πj ,h′ . To avoid such an
undesired situation, if the access rights’ were obtained by special
free permission, it is necessary to run an extra validation step before
actually running πj ,h′ . The mitigation consists in verifying whether
the hash of the application (h′) is in the permissioned application’s
list located in µi ,h . Because µi ,h resides in the IPFS storage, it is
immutable and trustworthy.

Before application execution, assets’ integrity is checked through
the comparison of their content SHA-256 hash with those recorded
in the blockchain. This integrity check is required to make sure
the data stored by the untrusted part of the Executor itself was not
tampered with. Finally, the trusted part executes the application
with the corresponding dataset. The results are then sent back to
the Client and, therefore, to the final user.

4.4 Assets’ Catalog, Track, and Revocation
The workflow of cataloging, tracking, and revoking operations are
similar to the acquisition of asset’s access rights, and thus, they can
also be illustrated by Figure 3.

Before acquiring the access rights’ of an asset, a user first needs
to decide which application and dataset satisfy her necessities. This
decision is facilitated through the catalog operation, which returns
the assets with their associated manifest containing a detailed de-
scription of its features. To perform such operation, the user has
to inform the Client how many blocks she wants to search for the
registered assets in the blockchain. This argument has a direct im-
pact on the response time, as presented in the evaluation section. If
no argument is provided, then the whole blockchain is scanned.

At any moment, the asset owners can track the usage of their
data and application. Likewise, the catalog operation, tracking re-
quires the range of blocks considered for the search. The following
information comprises a track response: application executed, input
data, acquisition timestamp, and ID of execution requester. Both
catalog and track are read-only operations performed by searching
for event signatures on the log history.

Finally, whenever an asset owner is no longer interested in keep-
ing her asset available, she can revoke it from DNAT. Note, however,
that users who have already acquired the access rights for some
asset will still retain the right to use it. On the other hand, new
access rights’ acquisition is blocked. In contrast to catalog and track
operations, revoking changes the state of the smart contract.
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5 SECURITY ANALYSIS
A possible successful attack is commonly known as “data escape”.
For instance, a confidential application could simply return the
input data as response. However, this type of attack can happen to
possibly any system running confidential applications if we assume
that, as external parties cannot see the application, there is no guar-
antee about what the code being executed is doing, consequently
making it possible for data to be returned. Therefore, we assume
that our system handles only one sensitive asset at a time: either
the application or data is confidential.

A critical step to assure DNAT’s security is in the deployment of
the Executor. In this deployment, the asymmetric key used in the
re-encryption process must be securely generated. Otherwise, the
infrastructure provider would be able to decrypt the assets after re-
encryption. This could happen because, between the re-encryption
phase and the execution phase, the assets would be persisted on disk
and the infrastructure provider, in possession of the private key,
would be able to decrypt such assets. Therefore, in order to enforce
a secure re-encryption, the infrastructure provider must request a
key pair to the KMS during the Executor deployment. Since the KMS
is an SGX-based component, the infrastructure provider would only
have access to the public key; the private key would be delivered
to the trusted part of the Executor after integrity attestation of the
application. This master key can then be used to generate other
one-time keys to be used in the re-encryption process.

The false positives yielded by queries to Bloom filter do not
pose security issues to DNAT because the Executor component
does an extra verification by examining the manifest of the dataset.
Nevertheless, choosing appropriate parameters for the Bloom filter
is a good practice as it results in less noise (i.e., invalid transactions)
for audit operations. Furthermore, an attacker would have to pay
for miners to process their transactions for each attack attempt.

6 EVALUATION
6.1 Experiments and Environment
Some relatively well-known ML algorithms, such as logistic regres-
sion (LR), support vector machine (SVM), and random forest (RF),
were used to train models over sensitive data. Since the training
was performed without actually requiring a developer to inspect
the raw data, such a use case evidences that the DNAT platform
can be applied in a privacy-preserving fashion. Moreover, while
traditional privacy techniques distort the data in ways that may
compromise the results of training, our platform preserves the orig-
inal data. We also evaluate the performance of the platform giving
a glance at the cost of each component of DNAT, either on-chain
or off-chain, to show its performance.

Three data sources are used in the evaluation process. The first
one, the Cleveland heart dataset [8], is composed of cardiac exams
done on 303 patients, where the features are values from such
as maximum heart rate achieved, and the target variable is the
diagnosis of heart disease. The second one, comprised of 462 exams,
is the South Africa heart dataset [18]. It is a retrospective sample of
males in a heart-disease high-risk region of theWestern Cape, South
Africa. The last one, the Medical Information Mart for Intensive
Care III (or MIMIC3, for short) [14], contains data on the admission

of tens of thousands of patients who stayed in critical care units of
the Beth Israel Deaconess Medical Center between 2001 and 2012.

To represent a very low load, but still based on real data, we
leveraged Cleveland’s and South Africa’s, both with a file size of
approximately 18 KB. To evaluate the platformwith different factors
of higher loads, we created sub-samples of MIMIC3, with a pre-
processed size of 1.7 GB. In the sub-sampling process, we selected
the most recent exams, considering the last six months (50578
exams, 8.2 MB total), the last year (370294 exams, 61 MB total), the
last two years (1188297 exams, 195 MB total), and the last four years
(3079828 exams, 504 MB total).

To process the experiments, we make use of distinct virtual
machines (VM) to host the Client, the SCONE CAS, the IPFS storage,
and the Executor component. The setup of these VMs is described
in Table 1. Furthermore, in order to draw realistic results, we use
the Ethereum Ropsten test net to host the DNAT’s blockchain
component. It uses a proof of work consensus similar to the one
used in Ethereum’s main net, has the benefit of being free, and, in
addition, enables the measurement of the amount of gas spent in
each smart contract operation.

Component vCPU RAM Storage
Client 1 2GB 20GB

SCONE CAS 2 2GB 20GB
IPFS 2 4GB 20GB

Executor 4 20GB 20GB
Table 1: Configuration of VMs for each DNAT component.

The experiment design is divided into two categories: off-chain
and on-chain evaluations. In this work, any operation changing the
state of the blockchain is considered to be on-chain. Thus, in the
off-chain assessment, we measure the impact of the Client, IPFS,
and Executor components on the overall time of DNAT’s operations.
In the on-chain evaluation, we discuss the average financial cost
of DNAT’s smart contract functions: register, acquire and revoke.
Moreover, we also discuss the time costs to have a transaction
securely persisted on the blockchain.

6.1.1 Off-chain assessment. Since all DNAT’s operations have at
least a portion of computation performed off-chain, we start the
evaluation by drawing a baseline measurement of such operations.

The time cost of the off-chain part of the register operation is
mainly caused by some preliminary computation performed over
the asset file. Thus, we instrumented the core data operation costs
(reading, encryption, hashing, and storage). For this experiment,
we tried out the 6-months sample and the 4-years sample generated
from the MIMIC3 workload, to assess a small and a large workload.

Following a similar approach, we also evaluated the costs of the
operations to acquire an asset’s access right and to revoke an asset.
This assessment was done by measuring the latency of the Client
while performing these operations.

With respect to the blockchain, catalog and track are read-only
operations. Their time costs are affected by the number of blocks
inspected (eth_getLogs) and by the number of calls (eth_call) per-
formed. Whenever some information about an asset is queried to
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the blockchain, a call is performed. As the number of found assets
grows, we expect an increase in the number of calls. For this reason,
we measured the latency of the number of calls performed and the
impact of searching in different quantities of blocks.

To gauge the application execution performance, we first applied
the ML models over low load data, the datasets of Cleveland and
South Africa. In this first set of experiments, the amount of Enclave
Page Cache (EPC) memory for the Executor VM ranged from 16 MB
to 90 MB, so that we could draw some conclusions on the impact of
EPC size over the application’s execution time. Moreover, we also
ran all the applications without the SGX TEE. Then, to investigate
a more representative setting, we tried out heavier workloads, the
6-months, 1-year, 2-years, and 4-years sub-samples of MIMIC3,
with a VM containing 90 MB of EPC. In this work, datasets with a
size close to or greater than the highest possible EPC size (90 MB)
are considered heavy because it will impose memory pagination.
Note that the application size also contributes to the occurrence of
pagination since it also resides within the enclave.

For ML training, which is the focus of our evaluation, each of
these datasets is stored as different assets. We believe that having
the information of each patient comprised of different assets would
not be realistic since data operators are hospitals or scientific orga-
nizations. Moreover, having the information of all patients wrapped
in a single asset favours the performance of DNAT’s operations
because there will be a single “data operation” (reading, encryption,
hashing, storage, and appending to the blockchain) for each asset.
However, in the context of classification, the final user is typically
a single patient that would like to utilize the model trained to ob-
tain some information. In this case, it is natural that information
regarding a patient is stored in a single asset.

6.1.2 On-chain assessment. Register, acquire and revoke are opera-
tions that change the state of the blockchain. Here we assess the
amount of gas for each operation, their corresponding financial
costs, and the time to be persisted on the blockchain.

7 RESULTS AND DISCUSSIONS
Figure 5 presents the latency of the register operation, repeated 30
times for different datasets, the 6-months and 4-years sub-samples
from MIMIC3, detailing the total time and the time regarding its
core data operations (reading, encryption, hashing, and storage).

Figure 5: Latency for 30 executions of the register operation.

As expected, the execution time increases as the workload size
increases. Also, it can be observed that core data operations like
reading, encrypting, hashing, and storing, typically consumes more
time as the file size increases.

The acquisition of asset’s access right and revoke operations
include little computation off-chain, and thus their running times
are proportional to the payload of the request sent to the smart
contract. The median time of acquiring and revoking, for 30 repli-
cations, is 2.84 and 1.6 seconds, respectively. However, this is not
the time it takes to have the information persisted on the ledger,
because it also depends on the gas price set for the transaction and
on the average time for including a block on the chain. At the time
of this writing, November 2019, according to [10], the average time
it takes to include a block on the Ethereum main net chain was
approximately 13 seconds. Also, according to [7], on December 3rd,
2019, to have a transaction persisted faster on the ledger, i.e., within
2 minutes, it is recommended to set the gas price to ten gwei, while
with one gwei a transaction would be recorded on the chain within
30 minutes. Note, however, that transactions with higher gas price
can, in extraordinary situations, take more time to be included on
the chain since there is no deterministic mandatory procedure that
the miners should follow to select transactions.

The catalog and track operations are mainly affected by the num-
ber of blocks examined and by the number of calls performed on
each block, and thus their execution times are computed as the sum
of these two latencies. Figure 6 shows the median latency for scan-
ning different number of blocks, and Figure 7 presents the latency
when performing different number of calls. Both experiments were
executed with 30 repetitions. As a reference, 186606 blocks were
mined in the Ethereum main network in June 2019.

Figure 6: Median latency of 30 event queries on blockchain
for different number of blocks.

The first conclusion we can draw from Figures 6 and 7 is that
the latency of searching for events in the blockchain grows almost
linearly with the number of blocks and calls. Therefore, the response
time for the catalog operation may vary according to the number of
assets retrieved. If there were, for instance, 1000 assets to be listed,
and if for each asset five read operations were performed, then,
assuming 100 calls lasts approximately 31 seconds, it would take
approximately 25 minutes. Although this time is considerable, cloud
or infrastructure providers that support DNAT could cache and
index such data, eliminating the latency for such queries. Finally, if
these assets were searched within 2 million blocks, which would

57



DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada José Roberto Nascimento Jr, José B. S. Nunes, Eduardo Lucena Falcão, Lilia Sampaio, Andrey Brito

Figure 7: Median latency of 30 queries for asset information
on blockchain for different number of calls.

mean approximately the last 300 days (assuming a block time of 13
seconds [10]), then, according to the results presented on Figure 6,
an extra 32 seconds (approximately) would be summed to this time.

The last off-chain operation is the execution of the application.
Figure 8 presents the execution time for different ML models (logis-
tic regression, random forest, and support vector machine), with
different EPC sizes, and over the heart datasets of Cleveland and
South Africa. A confidence interval with a confidence level of 95%
is also plot over the median of 30 executions. The overhead the
platform adds is presented in Figure 9, for the LR model and using
the Cleveland and South Africa heart datasets.

Figure 8:Median execution time of differentMLmodels over
Cleveland and South Africa heart datasets. The durations in-
clude the overhead of the platform.

From Figure 8, we conclude that the EPC size has some impact, as
increasing the EPC size decreases the median execution time. This
reduction is attributed to a decrease in the intensity of memory page
swap operations, copying data from the enclave to themainmemory.
Note that this process requires encrypting and decrypting in order
to protect data confidentiality [20]. However, we also noticed that
there is no significant difference from the execution with EPC
size equal to 64 MB and 90 MB since there is an overlap on their
confidence interval, and we believe that the reason is that for this
small workload, 64 MB of EPC is sufficient to avoid page swapping.
Furthermore, one can observe that for applications running such
small workloads, the overhead added by the platform due to re-
encrypting assets with a common key, environment attestation,
and access rights verification, is not marginal.

Figure 9: Median execution time for LR over Cleveland and
SouthAfrica heart datasets. “Application” represents theML
training time, and “total” stands for the time of training
summed with the overhead of the platform.

We also experimented execution of heavier workloads. Table 2
presents the confidence interval (95% confidence level) over the
median of the execution time for 30 repetitions, using the MIMIC3
sub-samples and the logistic regression model. We ran this model
both as a standalone application (without SGX) andwithin DNAT, in
order to comprehend the overhead added by additional operations
performed by the platform. The overhead ratio reflects how much
slower is the application execution within DNAT. Finally, Figure 10
presents the execution time of the application (within the SGX TEE)
and the total time DNAT takes to complete the execution workflow.

MIMIC3 Range App DNAT Ratio
Six months (8.2 MB) [1.8, 1.9] [194.4, 195.3] 102.9
One year (61 MB) [10.1, 10.2] [661.3, 665.9] 65.1
Two years (195 MB) [29.5, 29.7] [1564.9,1575.1] 52.9
Four years (504 MB) [78.9, 80.4] [3941.2, 3968.9] 49.9

Table 2: Confidence interval for the median time of applica-
tion execution (LR) over MIMIC3, as a standalone applica-
tion (ML training without SGX), and within DNAT.

Figure 10: Median execution time of LR over MIMIC3.

From Table 2, it can be observed that, when comparing the con-
ventional (without SGX) and the DNAT executions, the overhead
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ratio increases from 49.9 to 102.9. From Figure 10, we conclude
that for the small workload (6-months), the overhead added by the
basic operations of the Executor (environment attestation, asset
transfer, and decryption) is not marginal. However, as workload
size increases, the basic operations of the Executor become less
impacting, and the SGX TEE becomes the main reason of execution
latency. Nevertheless, we have to consider that training a model
over some data is not a task performed frequently. It could be
performed monthly, or even at longer time intervals, as the ones
considered in the samples. For instance, 3.25 minutes is negligible if
we consider this application would run once every six months. Such
scenarios evidence DNAT’s practicality. In addition, as depicted in
Figure 10, which complements Figure 9, the overhead introduced
by the DNAT platform is negligible with larger workloads.

We conclude the evaluation with the financial costs of on-chain
operations. Here we rely on information provided by [7] on June
14th, 2019, when a fast transaction (persisted in less than 2 minutes)
required on average ten gwei, and a low safe transaction (persisted
in less than 30 minutes) required on average one gwei. Table 3
presents the on-chain costs of contract creation, asset registration,
acquisition of asset’s access right (with and without Bloom filter
verification), and revocation of asset’s availability on the platform.

Operation Gas Usage Cost (USD)
Safe Low Fast

Contract Creation 1800437 $0.466 $4.660
Asset Registration 236517 $0.061 $0.612
Asset Acquisition 47455 $0.012 $0.123

Asset Acquisition (BF) 41150 $0.011 $0.107
Asset Revocation 14923 $0.004 $0.039

Table 3: On-chain operation costs with ether price on June
14th, 2019.

From Table 3, it is possible to note that the asset acquisition and
asset revocation operations can be performed at an approximate
cost of one cent of a dollar, considering a safe low-cost transaction.
To be persisted faster, in 10 seconds, twelve cents of a dollar would
suffice. Note that the cost of acquisition with BF verification is a bit
cheaper than the cost of asset acquisition without BF verification
because the latter changes the state of the smart contract. The asset
registration demands 6.1 cents and 61 cents of a dollar, for the
low and fast approaches respectively. However, it is essential to
highlight that an asset requires a single registration, and depending
on its price, when a single user acquires the access rights to use
it, this value may be returned. This is also the case for contract
creation. Although it has a high cost to be persisted, a single contract
is enough to mediate the access and track the usage of multiple
assets, from multiple owners, by multiple final users.

8 RELATEDWORK
ProvChain [15] is an architecture to track cloud data operations by
embedding provenance data into blockchain. For privacy purposes,
user id, as well as data operations, are hashed before being stored
on the provenance database. The operation history is hashed into
Merkle tree nodes, and the root node is anchored to a blockchain

transaction. Thus, if the provenance database was tampered with,
then the hash of all operations history will not match the root
node recorded in the blockchain. ProvChain performance was mea-
sured within the OwnCloud application. Hooks and listeners were
inserted for every user operation over files, and such events fire
provenance data generation. The provenance service adds an aver-
age time overhead of 6.5%, but no financial evaluation is provided.

SmartProvenance [17] and Controllable Blockchain Data Man-
agement model (CBDM) [23] use the Ethereum blockchain to record
provenance data of documents. They share a similar goal of avoid-
ing unauthorized document modification. Thus, all the changes
must pass a validation process in order to be persisted. SmartProve-
nance applies off-chain verification scripts before actually accepting
changes and logging them to the blockchain. In both SmartProve-
nance and CBDM, every provenance change has to be approved
through a voting process performed with the aid of a smart contract.

Ali et al. [1] propose a secure data provenance framework for
cloud-centric Internet of Things through blockchain smart con-
tracts. The blockchain is used to store the device metadata con-
cerning its identity, the collected data, and periodic traffic profiles.
In the proposed architecture, a gateway component is in charge
of hashing the data and persisting such value in the blockchain, a
strategy applied by most of the works due to the high storage costs
of the blockchain. Likewise ProvChain’s strategy, only the root of
a Merkle tree is stored on the blockchain, the data itself is kept in
cloud storage. If a third party desires to consume the uploaded data,
it must provide its public key to the device provenance contract,
an approach required by DNAT’s Key Management Service. The
contract ensures device identity provenance of application services
using the data stored in the cloud, which is a very similar goal
of DNAT, except that DNAT guarantees confidential execution of
applications over data.

In the topic of trusted executions, including blockchain solutions,
there is the work of Brandenburger et al. [4]. They propose a com-
bination of the Hyperledger Fabric blockchain with Intel SGX in
order to run smart contracts confidentially. The similarity between
DNAT and their solution is that input data is kept secret. However,
in their approach, the smart contract is the application itself, and
thus its results are persisted on the blockchain, while in DNAT
results are persisted on external storage such as IPFS.

There are also some commercial initiatives whose goals are par-
tially aligned to DNAT’s, such as Enigma and iExec. Zyskind et al.
presented Enigma [24] to circumvent blockchain’s lack of scalability
and confidential computation. They argue that pieces of the smart
contract could be offloaded from the blockchain. This enhances
scalability and allows privacy-enforcing computation, mitigating
the slow and public nature of blockchain. Smart contracts are pro-
grammed in a high-level code that allows specifying which parts
run publicly, on-chain, and which should run privately, off-chain.
To guarantee the confidentiality of data, Enigma relies on secure
multi-party computation, a technique that splits data and provides
such unreadable pieces of data to different processing nodes.

iExec [11] started as a blockchain-based outsource of oppor-
tunistic desktop grid resources. Ethereum and its smart contracts
were regarded as a form of managing distributed resources, cre-
ating a resource marketplace. Fedak et al. conceived the proof-of-
contribution protocol, designed to promote trust between final users
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and workers (compute resource providers). The protocol discour-
ages workers from delivering wrong results seeking compensation
by employing a majority voting process on the (hashed) result, in
such a way that these malicious workers are financially penalized.
One of the similarities between DNAT and iExec is the possibility
of publication of datasets and applications.

Despite all the similarities between DNAT, Enigma and iExec,
the main goal of DNAT is application usage and data traceability,
while Enigma and iExec share only the common goal of confidential
execution. Further, neither Enigma nor iExec provides official doc-
uments detailing the architecture regarding the application of SGX
TEE’s and its performance. However, we speculate that their ap-
proach could be similar to DNAT’s, in which data and applications
are only decrypted inside a TEE.

9 CONCLUSIONS
This work presents DNAT, a platform for tracking confidential
executions of applications over data in a distributed system. To
provide tracking, we use the blockchain technology, leveraging its
decentralized nature, immutable log records, and support for com-
pensation on the usage of valuable assets. Smart contracts are used
to store information about the operations that can change the state
of the ledger, like asset registration, acquisition of asset’s access
rights, and assets’ provision revocation. Furthermore, DNAT offers
other functionalities such as the proper execution of the application
over a specific dataset. At this step, another contribution of this
work relies on the use of TEE to provide confidential execution of
applications. Our architecture uses Intel SGX in one of its compo-
nents to make sure executions happen inside protected memory
areas, and secrets are only delivered to trusted attested parties.

This work also conducts an evaluation set of tasks to show how
DNAT performs with an illustrative health care application. The ex-
periments showed that, when considering confidential executions,
besides the regular costs regarding computing resources, there is
a time cost linked to the overhead caused by the TEE approach,
which can be considered proportional to the workload size.

Finally, contrasting DNAT to state of the art, related works pro-
pose solutions using TEE but do not focus on the tracking of assets’
executions as done here. Future steps for this researchmight include
different implementations for some components of the architecture,
e.g., to support other TEE technologies. Furthermore, we also con-
sider deepening investigations on how to improve the performance
of confidential execution of applications.
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