EdgeScaler: Effective Elastic Scaling for Graph Stream
Processing Systems

Daniel Presser
daniel.presser@posgrad.ufsc.br
Universidade Federal de Santa Catarina
Florianépolis, Brazil

Luis Rodrigues
ler@tecnico.ulisboa.pt
INESC-ID, Instituto Superior Técnico, ULisboa
Lisboa, Portugal

ABSTRACT

Existing solutions for elastic scaling perform poorly with graph
stream processing for two key reasons. First, when the system is
scaled, the graph must be dynamically re-partitioned among work-
ers. This requires a partitioning algorithm that is fast and offers
good locality, a task that is far from being trivial. Second, exist-
ing modelling techniques for distributed graph processing systems
only consider hash partitioning, and do not leverage the semantic
knowledge used by more efficient partitioners. In this paper we
propose EdgeScaler, an elastic scaler for graph stream processing
systems that tackles these challenges by employing, in a synergistic
way, two innovative techniques: MicroMacroSplitter and AccuLocal.
MicroMacroSplitter is a new edge-based graph partitioning strategy
that is as fast as simple hash partinioners, while achieving quality
comparable to the best state-of-the-art solutions. AccuLocal is a
novel performance model that takes the partitioner features into
account while avoiding expensive off-line training phases. An ex-
tensive experimental evaluation offers insights on the effectiveness
of the proposed mechanisms and shows that EdgeScaler is able to
significantly outperform existing solutions designed for generic
stream processing systems.

CCS CONCEPTS

« Information systems — Stream management; Parallel and
distributed DBMSs; « Mathematics of computing — Graph algo-
rithms.

KEYWORDS

Graph Processing, Stream Processing, Elastic Scaling

ACM Reference Format:
Daniel Presser, Frank Siqueira, Luis Rodrigues, and Paolo Romano. 2020.
EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS 20, July 13-17, 2020, Virtual Event, QC, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8028-7/20/07...$15.00
https://doi.org/10.1145/3401025.3401734

39

Frank Siqueira
frank.siqueira@ufsc.br
Universidade Federal de Santa Catarina
Florianépolis, Brazil

Paolo Romano
romano@inesc-id.pt
INESC-ID, Instituto Superior Técnico, ULisboa
Lisboa, Portugal

In The 14th ACM International Conference on Distributed and Event-based
Systems (DEBS °20), July 13-17, 2020, Virtual Event, QC, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3401025.3401734

1 INTRODUCTION

Stream processing is a well established paradigm that allows users
to make queries over continuous streams of data[5]. In this paper we
focus on graph stream processing systems, where queries are made
to a graph data structure that is continuously modified by a stream
of updates that create, delete or change vertices and/or edges over
time. Graph stream processing has important applications such
as fraud detection [28], social trend analysis [15], advertising [8],
among others.

Graph stream processing systems typically work by processing
batches of updates, that are accumulated during a short window
of time. Each batch is applied to the current graph, generating an
updated graph that is processed while a new batch of updates is
collected. This procedure is repeated while the phenomena that
are being monitored persist. Running a graph stream processing
system requires the continuous allocation of a significant amount of
physical resources. This calls for systems that are able to optimize,
and dynamically adjust, the right amount of resources allocated
to the job. On the one hand, if the system is under-provisioned,
it may not be able to process a given batch of updates before the
next batch is available, decreasing or nullifying the value of the
results. On the other hand, over-provisioning the system may lead
to unnecessary economic costs.

Despite the large number of studies on elastic scaling in (generic)
stream processing systems[14, 16], the existing approaches do not
offer acceptable results for the relevant case of graph stream pro-
cessing systems. This is illustrated in the blue line of Figure 1,
labeled “Baseline", that shows the performance of a state-of-the-art
elastic scaling technique [16] when applied to an evolving Twitter
graph (see Section 4 for details). This Baseline technique [16] was
chosen because it is an elastic scaling approach for data stream
processing that can handle stateful operators and, therefore, can be
easily adapted to graph stream processing.

The system considered in Figure 1 collects a batch of updates
every 30 seconds, with a 33 seconds hard deadline, and aims at
incorporating them in the graph before the arrival of a new batch.
As can be noticed, the Baseline elastic scaler [16] detects that the
system is under-provisioned based on the observed batch processing

https://doi.org/10.1145/3401025.3401734
https://doi.org/10.1145/3401025.3401734

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

701 _e— Baseline
—#— EdgeScaler

60 -

a

vertical
1k
40 4 i Jﬂ'
kLO / # f' 7l |

LA

20

Batch Latency (s)

o 'v{vNW Ll

50 100 150 200 250

Running Time (minutes)

Figure 1: Comparing EdgeScaler vs a state-of-the-art
technique[16], replaying 5 hours of Twitter traces[35] and
running PageRank on Amazon EC2 with 30s windows and a
33s SLO.

latency (which reflects congestion) and adds new servers to the
configuration (points marked with a blue dot on the chart). As
the graph grows during the execution (around 50%, from 1M to
1.5M vertices), the elastic scaler performs this operation multiple
times but, after the 5th reconfiguration, adding new servers is no
longer effective. In fact, at that point, the overhead induced by
communication among servers outweighs the benefits from adding
additional computing power. Thus, the latency keeps increasing.

A closer analysis of this plot highlights the limitations of existing
elastic solutions for generic stream processing, such as [16], when
applied to graph stream processing. First, like most other previ-
ous techniques for dynamic reconfiguration of graph processing
systems, [16] relies on consistent hashing to partition the graph.
Consistent hashing is fast to execute (and, therefore, enables fast
reconfigurations), but it produces low quality partitions. Thus, the
system becomes increasingly inefficient as the graph size grows
and new servers are added, causing reconfigurations to become
more and more frequent. Second, existing elastic scalers for stream
processing systems only address operator parallelism, through hor-
izontal scaling, and lack an appropriate performance model that
would enable selecting between horizontal and vertical scaling.

Based on these insights, we can identify two key challenges that
must be addressed when designing an elastic scaling system for
graph stream processing platforms.

First, contrary to most stream processing systems, where work-
ers maintain little or no state, in a graph processing system, every
time elastic scaling occurs, the graph needs to be re-partitioned and
a large amount of data may need to be shuffled among workers.
Also, if the resulting partition is of poor quality, adding new nodes
to the system may actually have detrimental effects on performance,
since the efficiency of graph processing is highly dependent on the
partition quality[1]. Thus, new re-partitioning techniques that are
fast and produce results of good quality are needed.

Second, elastic scaling should support both horizontal and verti-
cal scaling. This requires the availability of a suitable performance
model that can predict the effect of each potential adaptation. As al-
ready mentioned, though, the performance of a given configuration

40

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

is highly dependent on the current graph size and on how the graph
has been partitioned. Unfortunately, existing performance models
for distributed graph processing platforms only consider simplis-
tic/inefficient hash partitioning strategies [11, 23, 27]. Thus, graph
stream processing systems require performance models that can accu-
rately predict the dynamics of less trivial/more efficient partitioning
schemes.

In this work we present EdgeScaler, an elastic scaling middle-
ware for window-based graph stream processing systems that ad-
dresses the challenges above. Figure 1 also plots the performance of
EdgeScaler when applied to the same run (green line). EdgeScaler
performs less reconfigurations and more effective ones (points
marked with a green star on the chart). In fact, while with the
Baseline [16] the 33s hard deadline is violated over 25% of the time
and eventually latency grows unbounded, EdgeScaler is able to run
the system within the target service level objective (SLO), only vio-
lating it in less than 3% of the time. Also, in this scenario, the total
operational cost of the system with EdgeScaler is 35% smaller than
with the Baseline [16] (cost is not depicted in the figure, see Section
4 for additional details). EdgeScaler achieves these improvements by
combining, in a synergistic way, two innovative techniques, which
we named MicroMacroSplitter and AccuLocal.

MicroMacroSplitter is a novel edge graph partitioning algorithm
that maps the original graph to a micropartition graph, where each
micropartition clusters a subset of the edges of the original graph.
Due to its smaller scale, the micropartition graph can be quickly
re-partitioned (when an adaptation is required) using METIS[20], a
high-quality partitioning algorithm. As a result, MicroMacroSplitter
combines the speed of hashing, while achieving partitions’ quality
close to that of state-of-the-art partitioning algorithms. Further, the
quality of the partitions produced by the MicroMacroSplitter (e.g.,
number of replicated vertices) for a target configuration can also
be quickly, yet accurately, calculated, supporting the construction
of accurate performance models.

AccuLocal is a new performance model for graph processing
systems that builds on the key observation that, in realistic settings,
even in the presence of rapid workload changes, the adaptations
that are actually required tend to be localized, i.e., lead to config-
urations that are relatively close to the current one. We exploit
this observation by purposely bounding the scope over which the
performance model will be queried, so to include only the config-
urations in the vicinity of the current one. This led us to design a
custom linear regression model that can be learnt in an online and
lightweight fashion, by monitoring only a few performance metrics
in the current configuration and exploiting the knowledge on the
partitions produced by MicroMacroSplitter in the target configura-
tion. As we will show, not only AccuLocal achieves high accuracy
(less than 10% error) in the proximity of the current configuration,
but can also guide the adaptation process in realistic scenarios ef-
fectively, i.e., identify the correct target configuration, whenever
an adaptation is required.

We have built a prototype of EdgeScaler using two popular tools
for stream processing and graph processing, namely Apache Spark
Streaming [36] and GraphX [34]. This prototype was evaluated
with real-world graphs, including static graphs and a dynamic
graph extracted from Twitter. Our results show that EdgeScaler can
reconfigure the system up to two orders of magnitude faster than

EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems

existing sophisticated partitioning algorithms, and that it is able to
reach stable configurations with a single adaptation in most cases.

The remainder of this paper is structured as follows. Section 2
provides background information on graph processing systems and
reviews the related literature. Section 3 provides a detailed descrip-
tion of EdgeScaler, whose evaluation can be found in Section 4.
Finally, Section 5 concludes this work and discusses future research
directions.

2 BACKGROUND AND RELATED WORK

Although there is a relatively small number of works targeting elas-
tic scaling for graph stream processing, the literature on distributed
(static) graph processing and on stream processing (not necessarily
for graphs) is quite extensive. Next, we highlight the key aspects of
previous work that are relevant for the development of EdgeScaler.

2.1 Distributed Graph Processing

An influential system in the area of distributed graph processing
is Google’s Pregel [25], that spawned several open-source imple-
mentations, such as Apache Giraph [4], GPS [30], and other vari-
ants [17, 34]. EdgeScaler is built on top of GraphX [34], a graph
processing system based on Spark [36], which also supports Pregel’s
graph processing model. Pregel uses a graph representation that
consists of a list of vertices, and each vertex is composed by a user-
defined value, a state (active or inactive), an adjacency list, and a
message queue. The graph processing task is expressed as a func-
tion that takes as input a vertex from the graph and can change its
value and state. The function is applied using a Bulk Synchronous
Parallel (BSP) programming model [32], that works as a sequence of
supersteps. In each superstep, the user-defined function is executed
for every active vertex of the graph. When the graph is partitioned
among multiple nodes, local updates must be propagated to other
nodes at the end of each superstep.

2.2 Graph Partitioning

Given a graph G = (V, E), where V is the set of vertices and E is the
set of edges, partitioning consists in splitting G into k partitions
P; such that Py U P, U ... U P, = G. Graph partitioning algorithms
aim at fulfilling two key goals: ensuring good load balancing and
minimizing the updates sent through the network at the end of each
superstep. The two main approaches to perform graph partitioning
— vertex and edge partitioning — are illustrated in Figure 2. The first
approach operates on the vertex set V, attributing each vertex to a
partition P;. In this case, edges can span partitions (an edge between
vertices (v, u) such that v € P; and u € P;), also known as edge-
cut. The second approach operates on the edge set E, attributing
each edge to a partition P;. In this case, vertices can span partitions
(assume edge (u,v) € P; and (v,y) € Pj, such that v is in both parti-
tions); vertices that span multiple partitions are said to have replicas
in these partitions. Although both approaches are used, edge parti-
tioning can be more efficient for scale-free graphs[17], which are
common in many real-world applications, such as social networks.
EdgeScaler is based on GraphX and uses edge partitioning.
Finding the optimal partitioning is known to be an NP-Hard
problem[3], thus using heuristics that provide good results in short

41

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

(a) Vertex Partitioning (b) Edge Partitioning

Figure 2: Vertex vs edge partitioning

time is extremely relevant. The simplest algorithm is hash parti-
tioning, in which edges are randomly distributed among partitions.
This algorithm is fast to execute, does not require any state to be
maintained by the partitioner, and produces well balanced parti-
tions. However, hash partitioning makes no attempt to reduce the
number of replicas; thus it can introduce large network overheads
at the end of each superstep. More sophisticated partitioning algo-
rithms have been proposed, such as PowerGraph’s Greedy[17], and
HDRF[26]. HDRF has been shown to yield better results (i.e, less
vertex replicas) than hash, but is slower. Further, although they are
streaming partitioners (i.e., they can determine the target partition
of each edge in a single pass), they introduce prohibitively high
costs whenever the full graph has to be repartitioned due a change
in the configuration of the computing platform. Incremental graph
partitioners have also been studied [10], but lack the ability to han-
dle recofigurations quickly. An in-depth analysis of partitioning
algorithms for graph stream processing applications can be found
in [1].

A few works have addressed the problem of finding partitioning
strategies that are both fast and able to produce results of good
quality. A notable example is the partitioning strategy proposed
for Hourglass [19], that offline uses the slow METIS algorithm to
partition the graph in a relatively small number of micropartitions
(much smaller than the number of vertexes in the graph, but much
larger than the number of workers) and, at runtime, places multiple
micropartitions in each worker. Hourglass, though, is designed for
vertex partitioning and for static graphs. EdgeScaler, conversely, is
designed to use edge partitioning and support evolving graphs.

2.3 Graph Stream Processing (GSP)

A graph stream processing system is designed to run graph analytics
over a flow of update messages that can change the graph topology
and the properties of edges and vertices. Kineograph[7], which
was one of the first GSP systems, produces periodically consis-
tent snapshots of the graph, over which an user-defined algorithm
can be executed. This programming model based on snapshots
was also used by subsequent systems, such as Tornado[31] and
GraphTau[18], as it is well suited for most graph processing tasks.
GSP systems distinguish themselves from other stream processing
systems because workers are required to maintain a large evolving
state. It has been observed that, depending on the rate of events
received, the graph can grow quickly, degrading performance[7].
Thus, the ability to perform elastic scaling on GSP systems is of the
utmost importance.

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

2.4 Elastic Scaling in GSP

There are many proposals in the literature on elastic scaling for
general-purpose stream processing systems[12-14, 16, 24]. How-
ever, these proposals are not suitable for GSP systems because they
either do not address partitioning the state among workers [14] or
assume stateful workers that, unlike graph processing, use simple
data structures, such as key-value pairs [12]. Moreover, the graph
partitioning strategy can have a significant impact on the overall
performance of a GSP system. However, its effect is seldom consid-
ered by elastic scale managers, which typically assume a simplistic
hash partitioning algorithm [12-14, 16, 24]. The performance dy-
namics of graph processing systems is also challenging, and often
vertical scaling is required to satisfy timing constraints. Unfortu-
nately, most auto-scaling proposals for stream processing systems
only consider horizontal scaling.

2.5 Performance Modelling for GSP

Performance modelling of BigData systems has received significant
attention in the literature, with proposals for generic systems such
as CherryPick [2] or specific to graph processing models[11, 23, 27].
These models target applications for which an adequate configura-
tion can be selected prior to their deployment, based on information
gathered during an offline training phase. These approaches cannot
be employed in GSP systems, which have to be reconfigured at
runtime to adapt to evolving workloads. EdgeScaler, conversely,
produces predictions based on information collected at runtime,
thanks to its domain-specific nature. Moreover, previous graph
performance prediction models [11, 23, 27] support only the hash
partitioning algorithm. This work, on the other hand, adopts a
sophisticated graph partitioning technique based on microparti-
tions. As a result, domain knowledge regarding the operation of
the partitioner can be used to improve the accuracy of the model.

3 EDGESCALER

This section describes EdgeScaler, an elastic scaling middleware for
graph stream processing systems. EdgeScaler is composed of two
main components, namely a stream graph processing engine and
an elastic scaling manager. In turn, these components use a novel
graph partitioning system and a performance model that have been
designed specifically to optimize the operation of EdgeScaler.

The stream graph processing engine is responsible for receiv-
ing update messages, aggregating them in batches, updating the
graph, and computing new results. It is a distributed processing
engine, based on Spark/GraphX, that can employ a (user-defined)
number of workers to process the updates. EdgeScaler is based on
the widely adopted Pregel programming model (other proposals,
e.g. [7, 18], are still on experimental stage). The computation is dis-
tributed among a number of workers, which correspond to different
(virtual) machines. Each worker handles one or more partitions of
the graph (one per available CPU core on the worker).

To partition the graph among workers, Pregel originally adopts
a vertex-based partitioning algorithm. EdgeScaler uses a more
efficient[17] edge-based partitioning strategy, in which edges are
assigned to workers and vertices can span partitions (and are repli-
cated when this happens). In this scenario, the messages exchanged

42

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

between partitions during a computation are bounded to the num-
ber of vertices replicated by the partitioning mechanism.

The EdgeScaler edge-based partitioner, called MicroMacroSplitter,
is fast (i.e., can be executed efficiently) and generates high-quality
partitions, with small vertex replication factors and good load bal-
ance among workers. Furthermore, the quality of the partitions
produced by MicroMacroSplitter is predictable, i.e., it is possible to
simulate its execution to determine the distribution of edges in a
different configuration. This makes it possible to accurately predict
its performance via modelling approaches, which are at the core of
EdgeScaler’s elastic scaling manager.

The elastic scale manager is responsible for reconfiguring the
pool of workers. More precisely, EdgeScaler assumes a cloud envi-
ronment where (virtual) machines with different hardware charac-
teristics (such as the instance types of Amazon EC2) are available
and can be launched by the system as needed. It aims at optimizing
both the type and number of (virtual) machines in use. By consider-
ing different machine types, EdgeScaler can scale both horizontally
(i.e., add more hosts of the same type) and vertically (i.e., replace
the servers in the current worker pool with more powerful ones).

Reconfiguration may be needed more than once as the system
evolves, because the size of the graph and the number of updates
in each batch change over time. Typically, the larger the graph is,
the larger the amount of resources that are needed to process a
batch of updates. The elastic scale manager monitors the perfor-
mance of the system (namely, how much time it takes to process
a batch of updates using the current configuration) and evaluates
the possibility of reconfiguring the system, whenever the latency
for processing a batch approaches the SLO.

The choice of a new configuration is performed with the help
of a performance predictor that we have developed specifically for
this purpose. The predictor is based on a new performance model,
named AccuLocal, that takes into account the specific features of
EdgeScaler to estimate its performance in a set of relevant configu-
rations (i.e., configurations in the vicinity of the current one), based
on the current graph state. AccuLocal estimates the time needed
by a configuration to process a batch of updates based on the num-
ber of the edges and vertices assigned to each worker and on the
number of vertices replicated among different workers. AccuLocal
uses a number of parameters and coefficients that can be learnt
and calibrated quickly at run-time. This calibration is based on the
performance of the current configuration and provides accurate es-
timations for other configurations that are close in the search space
and that are likely to be used next. The use of AccuLocal avoids
the need to run an expensive offline training phase, as typically
required by general modelling techniques|[2, 33].

3.1 MicroMacroSplitter

In an elastic graph processing system, when the system is reconfig-
ured, the graph needs to be re-partitioned, as the number and/or
the capacity of servers changes. Naturally, we would like the graph
partitioning algorithm to be fast and to provide high-quality parti-
tions. To tackle this quality vs. time dilemma, we have developed a
novel edge partitioning system, called MicroMacroSplitter.

The key idea at the basis of MicroMacroSplitter is to logically
map the original graph into a set of, so called, micropartitions M =

EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems

{11, p2, ..., gm }. The number of micropartitions m = |M]| is selected
to be orders of magnitude smaller than the size of the graph — so
that, upon reconfiguration, the resulting micropartitions can be
efficiently mapped to a different set of processors using a high
quality partitioner, like METIS or HDRF — while still being several
times larger than the maximum number of servers expected to be
used in the system - so that the partitions that are produced have
a quality close to that achieved by a high-quality partitioner on the
full graph. In case an initial graph exists, the mapping of the original
graph to micropartitions can be computed in an offline phase, before
an adaptation is needed, so that its latency does not have an impact
on the reconfiguration time. It can, therefore, use an algorithm
that derives micropartitions of good quality, even if the algorithm
required to do so is slow. MicroMacroSplitter uses HDRF [26], which
is a state-of-the-art edge partitioner that is known to provide results
of good quality.

Whenever a reconfiguration is required (as well as when
EdgeScaler is deployed in its initial configuration), MicroMacroS-
plitter maps the micropartitions into k larger partitions P =
{Py, Py, ..., P}, where k is the total number of CPUs available in the
target configuration, such that any P;¢; € M and UP;¢;. = M. The
micropartition mapping problem is modeled as a vertex partitioning
problem. We model each micropartition yy as vertices of a graph
G, that contains an edge between (p;, 1) iff both micropartitions
share vertices from the original graph (that is, they have replicas in
common). The number of replicas shared between these partitions
is defined as the weight of such edge. This graph Gy is then sub-
mitted to a vertex partitioning algorithm, namely METIS[20], with
the objective of minimizing the sum of the weights of the edges cut
and produce k partitions. Such minimization performed by METIS
reduces the number of replicas between the actual partitions.

At run-time, once the set of partitions P for the current config-
uration is defined and new batches are received, any new edge is
mapped to a partition in P via the following procedure:

(1) HDREF is used to first map a new edge to one of the micro-
partitions p; € M.

(2) At the end of a batch, every new edge is merged to the
corresponding partition in P, based on the mapping of micro-
partitions (M — P) initially defined by the METIS algorithm.

MicroMacroSplitter contributes to the performance of EdgeScaler
is several ways. First, when compared to hash partitioners, it makes
the system faster at run-time, since it derives partitions of higher
quality (via the joint use of HDRF at run-time, and of METIS upon
reconfiguration). Second, it makes re-deployment faster when com-
pared to conventional high-quality partitioners (e.g., HDRF), as it
recomputes the new partitions only over Gy, instead of the whole
graph. Further, by moving entire micropartitions, it is able to trans-
fer data more efficiently than both Hash and HDRF, which operate
at the granularity of individual edges (as will be shown in Section
4.3). Finally, since Gy is much smaller than the original graph, one
can precisely, yet efficiently, predict the quality of the partitions
produced by the MicroMacroSplitter in any target configuration by
simulating its execution, i.e., computing the new partitions without
actually shuffling data among machines. This property is key to
derive accurate performance models, as will be described next.

43

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

Table 1: Model Variables and Coefficients

Symbol Description

P Set of k partitions

M Set of m micropartitions

Vi Number of vertices on partition P;
E; Number of edges on partition P;

Rij Replicas shared between P; and P;
R; All vertices in P; that have replicas
T; Time required to process partition P;
a, B,y,w | Coefficients estimated by the model

3.2 The AccuLocal Model

We model the performance of a graph stream processing system
based on Pregel’s model (see Section 2) via a multi-variate linear
model that uses as inputs: the number of edges (E;) assigned to
each partition (P;), the number of vertices assigned to the partition
(Vi), and the number of replicas that these vertices have on other
workers (R;).

In Pregel’s processing model, computation can be roughly di-
vided in three steps: processing incoming messages, updating the
vertex value, and (possibly) sending new messages. However, given
the edge partitioning used by EdgeScaler, we have to distinguish
between messages sent by vertices, that are related to the analy-
sis algorithm being executed on the graph, and messages needed
do synchronize the vertices replicas. The first kind of message is
bound to the number of edges E; present in the partition, and the
operations performed over them are all local operations, as there
are no edge-cuts in this partitioning scheme. Coefficient o aims to
capture the contribution of this step in the overall execution time.
Similarly, the time required to perform the vertex updates will be
related to the number of vertices V; present in the partition, and is
captured by coefficient . The messages required to synchronize
the vertices replicas will be bound to R; (see Eq. 2), and is captured
by y. Finally, coefficient w aims to capture other additional fixed
processing times.

More precisely, the estimated time it takes for each worker i to
process partition P; is given by:

Ti=aEi+pVi+yRi+ o (1)

where R; represents the number of vertices in the partition P; that
are replicated in other partitions Pjx; € P, i.e.

R; = Z R;; (2)
j#iep
The coefficients a, f, y, and w in Eq. 1 can be efficiently learnt
at runtime using efficient fitting schemes [21] (see below). Table 1
offers a summary of the notation.
When predicting the performance of a target configuration, we
estimate the time it takes to process a batch by considering the
slowest partition, i.e.,

©)

T = max T;

P;eP
Estimating the coefficients: Due to its simplicity, the AccuLocal model
can be instantiated quickly, i.e., measurements from a few batches
are sufficient to estimate the coefficients for the current configura-
tion. EdgeScaler collects the time required to process each batch in
the current configuration into a sliding window that maintains the

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

most recent measurements. By monitoring each worker, EdgeScaler
is able to accurately measure the time required to perform each of
the previously described steps of a graph computation. Thus, the
coefficients a, 8, and y can be estimated individually, by minimizing
the model’s error (MSE) in predicting the execution time of the
corresponding computation steps over the set of measurements
in the sliding window. Coefficient w is estimated as a simple av-
erage related to the remaining time after accounting for the steps
previously described.

Defining the space of candidate configurations: The E;, V;, R; param-
eters on a target configuration can be efficiently and accurately
computed by simulating the execution of MicroMacroSplitter, i.e.,
calculating the new partitions in the target configuration, without
reshuffling the data in the system. However, the values of the model
coefficients (a, B, y and w), which are estimated in the current con-
figuration, are not guaranteed to be constant as the scale of the
system or the type of servers varies. Interestingly, though, as we
will show in the evaluation section, the coefficients learnt for a
given configuration can be used to estimate remarkably well the
performance of “close” configurations (i.e., configurations that do
not differ much from the current one). Thus, instead of attempt-
ing to learn the coefficients for all possible configurations, we use
the coeflicient values computed in the current configuration (as
described above) to estimate the performance of the system in a set
of candidate configurations that are within a bounded distance, D,
and for which the coefficients learnt in the current configuration
are still likely to be accurate.

This approach works well in practice because it is not reasonable
to expect a live graph processing system to require redeployment
on configurations drastically different from the current one. In fact,
even in the presence of sudden changes in the rate of messages
being processed by the system, the time taken for ingesting graph
updates is typically negligible (less than 5%) compared to the time
required to analyze the updated graph. Thus, the cost of the graph
analysis phase is largely dependant on graph size, which varies
slowly, in a realistic scenario, compared to the message arrival rate.

Let us now define more precisely how AccuLocal defines the set
of candidate configurations to be considered as possible targets for
a system reconfiguration. The search space is defined by a set of
different machine types (belonging to the same family) and a maxi-
mum budget By, both defined by the user at configuration time.
Each machine type i € I is characterized by a tuple (i, v;, p;, m;)
where v; is the cost of running an instance of that machine type, p;
is the processing power of the instance (number of CPUs), and m; is
the memory capacity of that machine (measured in terms of edges
it can store and process). In short, AccuLocal considers machine
types with different arrangements of CPUs and available memory.
This is a common practice in cloud providers such as Amazon EC2,
where machines are grouped into families with similar underlying
architectures, and offered in different “sizes”, varying the number
of CPUs and memory for each type. We assume that machines are
selected such that they always have enough disk space to store
the graph partitions assigned to them. The maximum budget Bax
captures the maximum amount of money the user is willing to
pay to run the graph processing system. EdgeScaler only considers
homogeneous deployments, i.e., deployments where all servers use

44

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

the same machine type, such that every machine can progress on
the computation at the same rate. Thus, a configuration is defined
by a tuple ¢ = (n, i) where n is the number of instances used in the
configuration and i is a machine type. The cost of a configuration
is defined as Cost(c) = n - v;. A configuration is only considered a
candidate if Cost(c) < Bmax-

AccuLocal considers as set of candidate configurations for an
adaptation, noted Ciupdidate- Only the configurations within dis-
tance D from the current configuration. More precisely, we use
Manhattan distance [6] computed after having mapped the tuple
(pi, m;j)Vi € I into a discrete two dimensional space defined by the
tuple (P, M), where P € {1,2,..., maxpi} represents the number
of processors, M € {1,2,..., maxm; } encodes the amount of avail-
able memory, and maxp;, = maxm, = B e denote, respectively,
the maximum number of processors and the maximum amount of
memory that can be acquired for a machine of type i given the avail-
able budget Bpqx (in terms of hourly cost). The mapping between
the values in each dimension of the original configuration space
and the space over which the Manhattan distance is computed is
obtained via a topological sort, that reflects an increasing “power".

3.3 The Elastic Scaling Manager

EdgeScaler’s Elastic Scaling Manager (ESM) is responsible for man-
aging the resources used by the graph processing engine such that
a target SLO is not violated and the cost of operating the system is
kept low[9]. In EdgeScaler we consider SLOs that define an upper
bound on the time required to process a batch of updates.

The ESM operates in a control loop that: i) monitors the current
performance; ii) checks if a reconfiguration is needed; iii) employs
the AccuLocal model to choose the best configuration and; v) de-
ploys the selected configuration.

Monitoring: ESM monitors the current system performance by col-
lecting, at each window, the execution time statistics produced by
each processor in each step of the computation.

Detecting the need for adaptations: Different policies can be used to
determine whether to trigger a reconfiguration and these policies
are somehow orthogonal to the main contributions of this paper.
Our current prototype uses a classic threshold-based reactive policy,
which is described next.

» SLO violation

trigger adaptation

w
o

safeband

Batch execution time (s)
N}
w

N
o

trigger adaptation

0 5 10 15 20 25 30
Running Time (minutes)

Figure 3: Illustration of the adaptation policy

EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems

We consider a SLO that represents the maximum allowed time
for processing a batch window, named Tp,qx. We also define two
parameters, namely slackfactor and safeband, that are used to cal-
culate a safety operation band [Ty, Thigr], in which the system is
expected to operate. We set Ty = Tmax - (1 — slackfactor) where
0 < slackfactor < 1. As the name suggests, slackfactor represents a
leeway to accommodate variations on the performance of the graph
processing algorithm and any potential lack of accuracy in the per-
formance predictions produced by AccuLocal, whose goal is to de-
crease the probability of violating the SLO. The safeband parameter,
on the other hand, is used to calculate Ty,,,, as Tjoyy = Thigh—safeband,
where Tpep, > safeband > 0. The safety operation band also ac-
commodates variations on the processing time and inaccuracies
in the predictions. Unlike the slackfactor, though, the use of the
safeband aims to prevent excessive allocation of resources, by defin-
ing a lower bound below which the system should perform an
adaptation.

Additionally, when evaluating a configuration, AccuLocal con-
siders a safe limit, defined as Tsafe = Thigh — Tmax - slackfactor. The
purpose of T, is to serve as a target within the safety operation
band for AccuLocal when evaluating configurations. By selecting a
configuration that is not on the edges of the safety operation band,
i.e., for which even small performance variations are likely to trig-
ger a new reconfiguration, we aim at preventing reconfigurations
from happening too often. Instead of targeting the middle of the
safeband, we use the parameter slackfactor ! to define Tsafe, follow-
ing the same rationale as with Thigh: accommodate inaccuracies
in the predictions while trying to keep the execution time as close
as possible to the limit Tp;gp, to prevent excessive allocation of re-
sources. Further, in order to control the reactivity of the adaptation
strategy, we trigger a reconfiguration if in the last k batches, at
least € batches took more than Tje), time to be processed (in all
experiments, we have used k = 10, € = 5).

In order to illustrate these parameters, we produced Figure 3.
This figure presents the safety operation band, on which EdgeScaler
aims to maintain the batch execution time, the areas that will trig-
ger adaptations and the SLO. Within the safety operation band,
we highlight the safe time Ty, . that is used by AccuLocal when
selecting new configurations during an adaptation. In this exam-
ple we used the same parameters as in the experiment of Figure 1,
namely Tyqx = 33s, slackfactor = 0.1 and safeband = 10. Note that
the safety band [Tjg,, Thign] = (29.7,19.7), and that Ty = 26.4.
This means that adaptations will be triggered when the execution
time gets above 29.7 seconds more than € = 5 times. When a recon-
figuration happens, new configurations are selected aiming for an
execution time of 26.4 seconds (that is, below Ty,).

Determining a target configuration.: Selecting the best configuration
consists in determining the cheapest configuration that allows the
system to operate in the safe band, that is:
arg min . Cost(c) : Tipy < Testimate(c) < Tsafe
c€Clandidate

EdgeScaler currently employs an exhaustive search algorithm to
select the best configuration, i.e., the AccuLocal model is used to
estimate the cost of all candidate configurations before the cheapest

1We used slackfactor when computing T, igh and Tsq g, for simplicity, but an additional
slack parameter for T4 e could be easily included in our model

45

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

one is selected. As we will discuss in the evaluation section, Accu-
Local can be queried fast enough for the search spaces that we have
evaluated. However, classic search heuristics (e.g., hill climbing or
simulated annealing) could be easily integrated to handle larger
search spaces.

Reconfiguring the EdgeScaler: After AccuLocal has selected the new
configuration, the ESM instantiates the new machines, if needed,
and starts the migration process. In order to perform a migration,
the system has to repartition and send the graph to the new ma-
chines. This is done using the Resilient Distributed Dataset (RDD)
structure, provided by Spark/GraphX, according to the distribution
of partitions determined by MicroMacroSplitter. Messages received
during the migration are accumulated and included in the next
snapshot, which is processed when the migration finishes.

4 EVALUATION

This section present an extensive experimental evaluation of
EdgeScaler, based on a prototype that operates with GraphX[34], a
distributed graph processing system based on Spark[36]. We have
used this prototype with real graph datasets, so to consider a combi-
nation of micro-benchmarks and executions against real workload
traces, and gather insights on the performance of EdgeScaler. Our
evaluation aims at answering the following questions:

e How does MicroMacroSplitter perform during a reconfigura-
tion of the worker pool, when compared with conventional
hash partitioning and with the HDRF partitioner (§ 4.3)?

e What is the quality of the partitioning produced by Micro-
MacroSplitter graph partitioning scheme (§ 4.4)?

e How accurate is the AccuLocal model (§ 4.5, 4.6)?

e What is the relative importance of the different mechanisms
embedded in EdgeScaler when faced with real workloads,
and how they compare to the literature, namely Hourglass
and Hash partitioner (§ 4.7)?

4.1

Despite being based on Spark, GraphX is not directly compatible
with Spark Streaming. Therefore, to implement EdgeScaler and in-
tegrate it with both GraphX and Spark, we had to develop our own
extensions for GraphX. Namely, we have implemented new opera-
tions that handle messages received from the streaming component
and update the graph at each window, such that the user-defined
analysis can be performed. This includes partitioning the incoming
changes to the graph according to MicroMacroSplitter, collecting
execution statistics that can be used by the prediction model and
responding to adaptations to the execution environment as defined
by the Execution Manager. EdgeScaler can run either with an initial
graph, or build the entire graph from the messages received. The
number of micropartitions that will be used by MicroMacroSplitter
can be configured by the user. The user also has to provide an ini-
tial system configuration. Note that even if the initially specified
configuration is not adequate, EdgeScaler can quickly adapt. We
used Spark v2.3.3 and Hadoop v2.7.0 as basis for this prototype.

Experimental Platform

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

Table 2: Graphs used in the experiments

Graph Abbrev. #Vertices | #Edges | Type
Twitter tw-1, tw-2 | 17M 164M Dynamic
Livejournal | lj 4.8M 68M Static
Orkut orkut 3M 117M Static
Hollywood | hlwood 1.1M 57M Static

4.2 Experimental Setup

The experiments have been conducted both on a private cluster,
owned by our laboratory, and on Amazon Web Services. On AWS
we used machines of the m5 family, ranging from 2 virtual CPUs
and 8 GiB of RAM (mb5.large) to 16 vCPUs and 64 GiB of RAM
(m5.4xlarge). In our laboratory, the cluster was configured to sup-
port different types of virtual machines, that mimic those available
on AWS, considering their hardware configurations and prices, at
the time of writing this paper. Specifically, the experiments were
executed on machines similar to the m5 family previously described.

For most experiments, we have used a dynamic graph built from
a dataset of over 476 million tweets extracted from Twitter [35]. To
assess the performance of the proposed mechanisms with graphs
that have different topological properties, we have also resorted to
other well-known static graphs[22, 29]. The characteristics of all
graphs that were used in the experiments are described in Table 2.

4.3 Repartitioning the Graph

The first experiments assess how MicroMacroSplitter performs dur-
ing a dynamic reconfiguration of the worker pool, when the graph
has to be repartitioned and then redistributed to a new pool of work-
ers. We compare MicroMacroSplitter performance against HDRF[26]
(a state-of-the-art edge partitioning algorithm that aims at achiev-
ing good partition quality at the expense of execution time) and
against hash partitioning (that is used by most graph processing
engines due to its fast execution).

A key factor for the performance of the system reconfiguration is
the time it takes to migrate edges among workers. Edge migration
is performed in two steps: first, the partitioning algorithm decides
where to place each edge, and then the system actually moves edges
among workers. Thus, ideally, besides achieving a good partitioning,
a partitioner must also avoid moving too many edges and must
decide quickly where to place them.

The results presented in Figures 4 and 5 show that the Micro-
MacroSplitter partitioner (“mms”) performs much better than HDRF,
and even outperforms Hash in this respect. We start with a deploy-
ment with just two workers and then double the number of workers
at each reconfiguration. Therefore, the first bars on the left of each
plot show the time required to reconfigure from a 2-worker to a
4-worker pool, next from a 4-worker to a 8-worker pool, an so on.
Each bar includes both the time needed to perform the partitioning
and the time spent moving edges between workers. The former cor-
responds to the dotted bottom part of each bar. MicroMacroSplitter
was configured to use 256 micropartitions.

The partitioning time for hash algorithm is negligible and not
visible in the chart. For MicroMacroSplitter, the partitioning time
consists of first computing the the arrangement of micropartitions
using METIS to decide where to place each micropartition; this
introduces a small overhead when compared to hash, however, it

46

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

livejournal orkut hollywood
600
500
3400
g 300
£
200
100
0
4 8 16 32 4 8 16 32 4 8 16 32
Num. workers Num. workers Num. workers
Figure 4: Time to repartition static graphs
tw-1 tw-2
15
E mms
B hash
%101 B hdrf
[J]
£
F s
0
4 8 16 32 4 8 16 32

Num. workers Num. workers

Figure 5: Time to repartition Twitter dynamic graph

is still not large enough to show in the chart for the simulated
scenarios. Interestingly, unlike hash, which moves each edge at a
time, MicroMacroSplitter moves whole micropartitions, so it can
move data more efficiently between workers, which is reflected
in smaller reconfiguration times when compared to hash. Because
all three algorithms produce well balanced partitions (§ 4.4), the
actual number of edges moved is similar in all scenarios. For both
MicroMacroSplitter and hash, edges can be moved between workers
in parallel, therefore they perform better for larger worker pools.

As for HDREF, by requiring a full graph repartition, the parti-
tioning time is comparatively very long in our implementation.
Since HDREF can only be executed on a single worker, it takes more
time to repartition the graph as the worker pool increases. HDRF
can also exhaust the worker resources if the graph is large. This is
shown in the Orkut graph, for which it was impossible to produce
an HDRF partitioning with the machines available. This experiment
shows how algorithms such as HDREF, albeit producing high quality
partitions, are not well suited for dynamic environments.

Figure 5 presents the same experiment on the dynamic Twitter
graph. Given that Twitter is a dynamic graph, two points were
selected in its evolution to perform this experiment. The points de-
noted “tw-1" and “tw-2" are snapshots of the dynamic graph when
EdgeScaler has triggered adaptations in the experiment presented
in Figure 1. The results are similar to the static graphs: MicroMacroS-
plitter performs similar to hash (albeit in this case the partitioning
time becomes relatively larger, due to the smaller graph size), and

EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems

much better than HDRF. Further, the reconfiguration time with Mi-
croMacroSplitter ranges from 0.9 to 2.4 seconds, being fairly small
in comparison to the 33 seconds deadline used in this experiment.

The time required to launch new machines during a reconfig-
uration was not considered in this experiment; only the time to
redistribute the graph to the new machines was measured. Although
launching machines usually incurs in a considerable overhead on
cloud providers, this can be compensated by, after triggering an
adaptation, continuing to process batches using the current configu-
ration until the new machines are ready, and only then performing
the migration. In our experiments, the time required to launch new
machines is fairly small (around 40 seconds for both “tw-1" and
“tw-2" scenarios, i.e., the reconfiguration is applied with a delay of
two batches).

4.4 Quality of the Graph Partitioning

Although MicroMacroSplitter performs well during a dynamic re-
configuration, being as fast as hash partitioning in this regard, the
quality of the partitions produced must also be evaluated, because
low quality partitions can introduce large communication over-
heads during the execution of the system. This experiment assess
the quality of the graph partitioning that results from using Mi-
croMacroSplitter. We compare its performance against HDRF and
hash partitioning, as in the last experiment. Two metrics are used to
capture the quality of the graph partitioning, namely the replication
factor (RF) and the edge balance factor (EBF).

The replication factor is defined as the number of replicas divided
by the number of vertices in the graph (i.e., the average number of
replicas per vertex). As described in Section 2.2, a smaller RF means
that fewer edges are replicated in different workers and, therefore,
a smaller communication overhead is incurred to synchronize the
workers.

The edge balance factor is calculated as follows:

EBF size of largest partition - number of partitions

total number of edges

Ideally, the EBF should be 1.0, as this means that every partition
has exactly the same size. HDRF and other partitioning algorithms
can deliver balance factors very close to this value. MicroMacroS-
plitter can approach this value depending on the number of mi-
cropartitions configured and the number of workers used.

Replication Factor: Figure 6a depicts the values of RF obtained when
different techniques are used to partition several graphs into 32
partitions. The performance of MicroMacroSplitter (“mms") depends
on the number of micropartitions that are used, thus we depict its
performance for values in the range of 64 to 512 micropartitions.
Three points were selected on the dynamic Twitter graph to perform
this experiment. The points denoted “tw-1" and “tw-2" are snapshots
of the dynamic graph taken right after the two reconfigurations
triggered by EdgeScaler on the experiment described in Figure 1,
i.e., after approximately 100 and 150 minutes; “tw-f" represents the
state of the graph at the end of that experiment (at 300 minutes).
As expected, HDRF achieves the lowest RF for all static graphs
(3.7 for livejournal, 9 for orkut, and 6.4 for hollywood) and hash
partitioning has the worst results. (11.2 for livejournal, 21.8 for
orkut, and 19.4 for hollywood). MicroMacroSplitter, on the other

47

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

hand, is able to produce far better partitions than hash, with RFs
very close to HDRF. The RF values for MicroMacroSplitter range
from 4.1 to 4.7 for livejournal, 10.3 to 12 for orkut and 7.4 to 10.4 for
hollywood. Experiments with the "twitter" graph follow the same
trend, even if the differences are less expressive. MicroMacroSplitter
produces RFs slightly higher than the direct use of HDRF, ranging
from 1.53 to 1.57 for tw-1 and 1.54 to 1.59 for tw-2, compared to 1.47
and 1.48 for HDRF on tw-1 and tw-2, respectively. The RF presented
by MicroMacroSplitter was, on average, 47% smaller than that of
hash (compared to 54% smaller when using HDRF directly). Note
that, although HDRF provides the best results, it is not suitable to be
executed online, as required in systems that perform elastic scaling.
In fact, the strategy of running HDRF every time the system needs
to be reconfigured has two main drawbacks: it introduces latency,
because running HDRF is computationally expensive (as shown in
Section 4.3), and it may cause many edges to move, slowing down
the reconfiguration process. MicroMacroSplitter, on the other hand,
runs HDRF when the system is first started, and quickly assigns
micropartitions to workers online. As shown in Figure 6a, it is able
to do so without inducing a significant increase in the resulting RF.

The results for the “twitter” graph (tw-1, tw-2, tw-f) also show
that MicroMacroSplitter is able to maintain the quality of the parti-
tioning as the graph evolves. The three scenarios span the entire
duration of the experiment depicted in Figure 1, being snapshots
taken after approximately 100, 150 and 300 minutes, respectively.
That is, the difference between tw-2 and tw-1 represents how Mi-
croMacroSplitter performed after about 50 minutes of operation,
and the difference between tw-2 and tw-f, after more than two
hours of operation. The experiment shows that the quality of the
partitions remains fairly constant during the whole experiment,
with a maximum difference in RF of only 0.02 between snapshots.

Edge Balance Factor: Figure 6b reports the EBF values obtained
when applying MicroMacroSplitter to different numbers of parti-
tions, namely for 10, 20 and 30 partitions, using different numbers of
micropartitions computed offline. With only 64 micropartitions, Mi-
croMacroSplitter does not show its full potential, achieving balance
factors in the range from 1.2 to 1.4. However, with 256 micropar-
titions, MicroMacroSplitter already delivered balance factors very
close to 1.0 (ranging from 1.01 to 1.07) for the three scenarios, with
a small tradeoft in replication factor as depicted in Figure 6a. Thus,
the use of a large number of micropartitions with MicroMacroSplit-
ter has a small impact on RF, but allows to improve the EBF for a
larger set of deployments.

In this scenario, MicroMacroSplitter also maintains the quality of
the partitioning as the graph evolves. There is very little change
in the EBF produced by MicroMacroSplitter from the first snapshot
to the second. Similarly, the “tw-f" snapshot shows that the ar-
rangement of micro-partitions remains balanced at the end of the
experiment, after more than two hours without reconfigurations.

The general vs custom tradeoff: Figures 6a and 6b also expose an
interesting tradeoff between the generality of a given partitioning
approach and its quality. On the one hand, hash is the most general
approach as it can be executed online, in an efficient manner, for
any number of workers. HDRF, on the other hand, is the most spe-
cific: in this case it provides the best results for 32 partitions, and
these partitions can be only used to generate balanced deployments

DEBS 20, July 13-17, 2020, Virtual Event, QC, Canada

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

(a) Replication Factor (RF)

i 64 0128 0 256 0512
tw-1 tw-2 tw-f lj orkut hlwood
Bhdrf
« 20 i i i i i i
S Imms-64 N 14
o [*]
O 15{Imms-128 S
5 Imms-256 ‘*E 1.21 1 1 1 1 1
£ 10{Imms-512 2
o o~
s .l thash = 1.0 1 1 1 1 1
o
0.8 / / / / /
NP PPH PPP PP PPH P PP

Num. partitions

(b) Edge Balance Factor (EBF)

Figure 6: Quality of partition comparison

in worker pools of size 2,4,. . .,32. MicroMacroSplitter-256 provides
slightly worse results for a pool of 32 workers, but with 256 mi-
cropartitions it allows to derive efficient deployments for a much
larger set of different worker pools.

4.5 Accuracy of the AccuLocal model

A key feature of EdgeScaler is the use of a domain-specific model
that allows to estimate accurately how different deployments will
perform given a concrete graph that has been previously partitioned
in micropartitions. The AccuLocal model leverages the fact that it
is easy to compute the exact replication factor that will result from
deploying the target graph on a given worker pool. The following
experiments show how accurate the model used by EdgeScaler is.

This experiment considers the same snapshots of the dynamic
twitter graph used in Section 4.4, i.e., the “tw-1" and “tw-2" snap-
shots obtained at the exact time a reconfiguration was performed
during the experiment illustrated in Figure 1.

For this study, we have compared the performance predicted
by the model with the actual performance. The set of configura-
tions used in the experiments is composed by pools with from 1 to
10 machines of m5 family. Pools with m5.large (I), m5.xlarge (xI),
mb.2xlarge (2xI) and m5.4xlarge (4xI) machines were created for
this experiment. The number of machines in each pool is computed
according to the definition of the space of candidate configurations,
described in Section 3.2, considering D = 4, that is, a maximum
of 4 steps from the current configuration (although the results are
presented only for the configurations that are predicted to achieve
the safe limit T, p). The base configuration for the first scenario
is an initial configuration of two m5.large machines, while for the
second scenario it is a set of three m5.large machines (i.e., the result
of the first adaptation).

Figure 7 presents the results of this study. Each bar corresponds
to a configuration and its respective cost in the format num of
machines.size, with the cost below. The configurations are sorted
by cost and actual execution time. We aim to assess if AccuLocal
can choose the cheapest configuration that meets the user-defined
SLO. As described in Section 3.2, we consider a 10% safe limit, so

48

a configuration may be selected only if the predicted latency to
process each batch is less than 27 seconds. For the first scenario
(“tw-1"), EdgeScaler selected the cheapest configuration: 3 m5.large
machines, with an error below 5% between the predicted and the
actual execution time. Although the actual execution time for this
configuration exceeded by a small margin 27 seconds, this configu-
ration was able to meet the SLO for almost one hour in the original
experiment (after which a new adaptation is performed).

As for the second scenario (“tw-2"), EdgeScaler’s prediction was
not as accurate. There were two configurations with the same cost:
1 m5.2xlarge machine and 2 m5.xlarge machines, with the former
performing slightly better than the latter (21.07 vs 22.95 seconds).
However, EdgeScaler predicted that the second configuration was
faster (with an error just over 10%), so that configuration was chosen.
This decision had no impact in the overall cost of the system or in
its ability to meet the SLO, however, it illustrates the challenges of
selecting the best configuration when considering both vertical and
horizontal scaling. Overall, the average prediction error considering
all configurations presented was around 10% for the first scenario
and close to 12% for the second one.

tw-1

O
o 30 -3 limit
g 3 3 "
= safe
5% .
By l
1
X
w

ype 1.1 2.1 1.xl 3. 2.x1 1.2xI L.4xI

cost 0.10 0.19 0.19 0.29 0.38 0.38 0.77

tw-2

@40 + predicted mm actual mm selected
g limit
= M & safe
_5 20
S
=1
I}
1%
X
w

0type 1.l
cost0.10

2. 1xl
0.19 0.19

3.
0.29

4.1
0.38

1.2xI
0.38

2.xl
0.38

5.1
0.48

2.2xl
0.77

1.4xI
0.77

Figure 7: Precision of predictions on Twitter graph

EdgeScaler: Effective Elastic Scaling for Graph Stream Processing Systems

s,
75,7552,

25 25 25
M2, P8P PPNk

= [N

2-

Q 4
g4) Coe 2
g BE g
TR R
) &g
€ 10 3
A (BN BN -BER"
=4
5
107 7 7 II
10-
tw-1 tw-2 livejournal 0

Machine type

(a) Precision (b) Hops

Figure 8: Accuracy and number of hops to best configuration

4.6 Accuracy Horizon

Next, we aim at quantifying how large D can be set in order to pro-
duce predictions that are accurate enough to be useful in selecting
the best configuration for a given scenario. We produced predic-
tions for configurations ranging from 2 to 10 workers of m5.large,
mb.xlarge and m5.2xlarge machines. That is, the largest configura-
tion (10 m5.2xlarge machines) is 20x larger than the smallest one
(2 m5.]arge machines). The prediction error was then calculated by
comparing the predictions with the actual execution times.

Figure 8a presents the results of an experiment conduced on the
Twitter graph, considering the two snapshots described in Figure 7,
ie, “tw-1" and “tw-2", and on the larger static graph, i.e., “livejour-
nal". For the Twitter graphs, the initial configuration was composed
of 2 m5.]arge machines (the top left point), and of 4 m5.xlarge ma-
chines for the livejournal graph. As can be seen, for both Twitter
snapshots, the predictions are very precise within the vicinity of the
initial configuration. If we consider a distance up to D = 4 from the
initial configuration, the average error is below 10%. As expected,
when the configuration gets much larger than the initial one, the
error increases (to a max of 24.1% for the largest configuration on
“tw-1"). For the “livejournal” scenario the results present both up-
and down-scaling possibilities. In this scenario, the average error
was smaller, as the most distant configuration from the initial one
is only 5x larger.

Note that although the prediction model is not as precise for
configurations that are far from the current one, it can quickly
adapt if the chosen configuration does not conform to the timing
restrictions. Thus, a better configuration can be selected after only a
few processing windows. To demonstrate this, we selected the “tw-
2" scenario and counted how many different configurations (hops)
the model chooses before reaching the best configuration for that
scenario, for each of the initial configurations considered. Figure
8b presents the results of these experiments, and shows that for
most of the initial configurations, a single hop is sufficient to reach
the best configuration. Only when very different configurations are
used as a starting point, more than one hop is required.

4.7 Overall Performance of EdgeScaler

In order to handle elastic scaling for stream graph processing effi-
ciently, EdgeScaler uses several techniques that have been described
individually so far. This section shows how these components work

49

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

in synergy, and how each component compares to the existing lit-
erature. To this end, the Twitter scenario presented in Section 1 is
revisited, with experiments being conduced in several snapshots of
the graph as it evolved during the period described in Figure 1. All
experiments presented in this section were performed using pools
of m5.large machines running PageRank, and the results are pre-
sented as the average time to process all batch windows (containing
30 seconds of updates), during 5 minutes of execution.

One important contribution of this work is MicroMacroSplitter
that can be applied to evolving graphs, unlike previous work, such
as Hourglass[19], which requires creating static snapshots for each
processing window and, as such, incurs in large I/O and bootstrap-
ping overheads. Figure 9a shows the overhead of Hourglass when
applied to stream processing: it compares the average time to pro-
cess a batch window for Hourglass and EdgeScaler, at the “tw-1"
and “tw-2" reconfiguration snapshots, using in each snapshot the
same worker configuration as in the experiment of Figure 1. In this
experiment, we replaced the graph processing engine of our stream
processing system with Hourglass. As such, for each window the
graph had to be saved to a persistent storage (HDFS, in this experi-
ment) as a static graph, Hourglass bootstrapped and executed, and
the resulting graph had to be loaded again so that new updates
could be applied to the graph. This results in the system being
unable to process the graph within the 30 seconds window, taking
in fact almost twice that time for each batch window.

Comparing EdgeScaler to existing performance prediction mod-
els [11, 23, 27] is difficult because they are limited to the simple
hash vertex partitioning algorithm, require a training phase, and
are not designed for dynamic graphs. AccuLocal, on the other hand,
supports sophisticated partitioning algorithms and can be used
online on evolving graphs. Considering the precision of the predic-
tions, AccuLocal is comparable to the models in the literature, with
errors in the vicinity of 10% [23, 27]. However, it is clear that, by
relying on MicroMacroSplitter to produce partitions with a small
replication factor, EdgeScaler achieves faster processing times for
each batch window when compared to the widely used hash parti-
tioning that is supported by the existing performance models. To
quantify this difference, snapshots of the Twitter graph were taken
at the moment of the first and second reconfigurations. Then, both
hash partitioning and MicroMacroSplitter were applied to create
from 4 to 32 graph partitions, on which EdgeScaler was executed.

ledgescaler 35\
Ihourglass
60 9 1.20 1.14 2
1.16
= 2115 114 =
;40 ° —25
c g 1.10 g
S 5110 F 20
20
1.05 15
tw-1 tw-2 1.00 4 8 16 32 10 2 4 8 16

Number of partitions Number of workers

(a) Hourglass (b) Speedups (c) Horizontal scaling
Figure 9: Speedups using MicroMacroSplitter and horizontal

scaling limitations of EdgeScaler

DEBS ’20, July 13-17, 2020, Virtual Event, QC, Canada

Figure 9b shows the average speedups obtained by MicroMacroS-
plitter when compared to hash, for the different configurations.
MicroMacroSplitter achieves speedups that range from 10% to 18%
over the hash partitioner. The speedup is smaller for 4 partitions
and grows as the number of partitions increases. This happens be-
cause, for a small number of partitions, the difference in RF between
MicroMacroSplitter and hash is also small (see Figure 6a). As the
number of partitions grows, the RF for hash grows faster, while
MicroMacroSplitter behaves more closely to HDRF and is able to
deliver higher speedups.

It is also important to highlight the relevance of supporting both
horizontal and vertical scaling in EdgeScaler. Figure 9c presents
the batch window execution time for several configurations (rang-
ing from 2 to 16 workers) at the same point in the Twitter graph
described in the last experiment. These results show the limita-
tion of performing only horizontal scaling: after 8 workers, adding
additional workers does not yield gains in performance, because
communication overheads start to dominate the execution time. By
using the AccuLocal performance prediction model, EdgeScaler can
detect when this happens and perform a vertical scaling, reducing
the communication overheads.

Overall, the combination of techniques used by EdgeScaler re-
sults in a 30% reduction of the cloud costs in the scenario considered
by Figure 1. Also, EdgeScaler avoids the flaws observed with our
baseline, which fails to keep the system stable by the end of the
experiment, missing almost all deadlines after its third reconfig-
uration. Even before that point, EdgeScaler misses 3 times fewer
deadlines than the baseline.

5 CONCLUSIONS

This paper introduced EdgeScaler, a graph stream processing sys-
tem that supports elastic scaling efficiently. An extensive experi-
mental evaluation of EdgeScaler shows that, by combining a novel
graph partitioning strategy and a performance model that takes the
partitioning results into account, EdgeScaler is capable of satisfying
user-defined timing restrictions, while minimizing the cost of run-
ning the system. As future work we plan to support the integration
of incremental graph processing abstractions in our streaming sys-
tem, such as those proposed by GraphTau [18], Kineograph [7] and
others. We also plan to expand the performance prediction model
using more sophisticated methods, such as Bayesian Optimisation.

Acknowledgements: This work was partially financed by
CAPES and CNPq and supported by Portuguese funds through Fun-
dacdo para a Ciéncia e a Tecnologia (FCT) via projects COSMOS
(via the OE with ref. PTDC/EEI-COM/29271/2017 and via the “Pro-
grama Operacional Regional de Lisboa na sua componente FEDER”
with ref. Lisboa-01-0145-FEDER-029271) and UIDB/50021/2020.

REFERENCES

[1] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-
ing graph partitioning: an experimental study. VLDN 11, 11 (2018).

Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics.. In NSDL

Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning. TCS
39, 6 (2006).

Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on
Hadoop. In Proceedings of Hadoop Summit.

(2]

(3]
(4]

50

—_

5]

G

[7

=
&

[13

[14]

[15

[16

(17

(18]

[19

[20]

[21

[23

[24

[25

[26

~
=

[28

[29]

[30

[31

(32]

[33

[34

(35]

[36

Daniel Presser, Frank Siqueira, Luis Rodrigues, Paolo Romano.

Shivnath Babu and Jennifer Widom. 2001. Continuous queries over data streams.
ACM Sigmod Record 30, 3 (2001).

Paul E Black. 2019. Manhattan distance.
manhattanDistance.html

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: taking
the pulse of a fast-changing and connected world. In Eurosys. ACM.

Marina Danilevsky and Eunyee Koh. 2013. Information graph model and appli-
cation to online advertising. In UEO. ACM.

Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. 2012. Elastic vir-
tual machine for fine-grained cloud resource provisioning. In Global Trends in
Computing and Communication Systems. Springer.

‘Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-
mentalization of graph partitioning algorithms. VLDB 13, 8.

Kenrick Fernandes, Rami Melhem, and Mohammad Hammoud. 2018. Investigat-
ing and Modeling Performance Scalability for Distributed Graph Analytics. In
CloudCom. IEEE.

Raul Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch.
2013. Integrating scale out and fault tolerance in stream processing using operator
state management. In SIGMOD. ACM.

Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: self-regulating stream processing in heron. VLDB.
Tom Fu, Jianbing Ding, Richard Ma, Marianne Winslett, Yin Yang, and Zhenjie
Zhang. 2015. DRS: dynamic resource scheduling for real-time analytics over fast
streams. In ICDCS. IEEE.

Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael
Mathioudakis. 2018. Quantifying controversy on social media. ACM TSC (2018).
Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic
scaling for data stream processing. IEEE TPDS 25, 6 (2014).

Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDL

Anand Iyer, Li Li, Tathagata Das, and Ion Stoica. 2016. Time-evolving graph
processing at scale. In GRADES. ACM.

Pedro Joaquim, Manuel Bravo, Luis Rodrigues, and Miguel Matos. 2019. Hourglass:
Leveraging Transient Resources for Time-Constrained Graph Processing in the
Cloud. In EuroSys. ACM.

George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme
for irregular graphs. JPDC 48, 1 (1998).

Erich Lehmann and George Casella. 2006. Theory of point estimation. Springer
Science & Business Media.

Jure Leskovec and Andrej Krevl. 2017. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data

Zengxiang Li, Bowen Zhang, Shen Ren, Yong Liu, Zheng Qin, Rick Siow Mong
Goh, and Mohan Gurusamy. 2017. Performance modelling and cost effective
execution for distributed graph processing on configurable VMs. CCGRID.
Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni.
2017. Elastic symbiotic scaling of operators and resources in stream processing
systems. IEEE TPDS (2017).

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Tacoboni. 2015. HDRF: Stream-Based Partitioning for Power-Law Graphs. In
CIKM.

Daniel Presser, Frank Siqueira, and Fabio Reina. 2018. Performance Modeling
and Task Scheduling in Distributed Graph Processing. In BigData. IEEE.

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. VLDB 11, 12 (2018).

Ryan Rossi and Nesreen Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In AAAL

Semih Salihoglu and Jennifer Widom. 2013. GPS: A graph processing system. In
SSDBM.

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A System
For Real-Time Iterative Analysis Over Evolving Data. In SIGMOD.

Leslie G Valiant. 1990. A bridging model for parallel computation. Commu.of the
ACM 33, 8 (1990).

Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics.. In NSDIL

Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
GraphX: A resilient distributed graph system on spark. In GRADES.

Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online
media. In WSDM. ACM.

Matei Zaharia et al. 2016. Apache Spark: A unified engine for big data processing.
Comm. of the ACM 59, 11 (2016).

https://www.nist.gov/dads/HTML/

https://www.nist.gov/dads/HTML/manhattanDistance.html
https://www.nist.gov/dads/HTML/manhattanDistance.html
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Distributed Graph Processing
	2.2 Graph Partitioning
	2.3 Graph Stream Processing (GSP)
	2.4 Elastic Scaling in GSP
	2.5 Performance Modelling for GSP

	3 EdgeScaler
	3.1 MicroMacroSplitter
	3.2 The AccuLocal Model
	3.3 The Elastic Scaling Manager

	4 Evaluation
	4.1 Experimental Platform
	4.2 Experimental Setup
	4.3 Repartitioning the Graph
	4.4 Quality of the Graph Partitioning
	4.5 Accuracy of the AccuLocal model
	4.6 Accuracy Horizon
	4.7 Overall Performance of EdgeScaler

	5 Conclusions
	References

