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ABSTRACT
The ACM 2020 DEBS Grand Challenge focused on Non-Intrusive
Load Monitoring (NILM). NILM is a method that analyzes changes
in the voltage and current going into a building to deduce appliance
use and energy consumption. The 2020 Grand Challenge requires
high performance and high accuracy NILM implementations. In
this paper, we describe the technical details of our solution for the
2020 Grand Challenge, a NILM program based on Apache Flink. We
employ a Divide-and-conquer strategy to implement our parallel
algorithm and designed a verify stage to improve the accuracy. For
performance, our method achieves a great overall run time and the
highest accuracy.
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1 INTRODUCTION
The ACM 2020 DEBS Grand Challenge[3] focused on Non-Intrusive
Load Monitoring (NILM), which is a process for analyzing changes
in the voltage and current going into a building and deducing
what appliances are used in this building as well as their energy
consumption[1].

The goal of the challenge is to implement a NILM program, with
two queries as tasks to solve. The first query aims at detecting
devices that are turned on or off in a stream of voltage and current
readings from a smart meter, resembling the aggregated energy
consumption in an office building. The second query is a variation
of the first one, and it is expected to process an input stream that
can contain both late arrivals and missing tuples [3].
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This paper describes our design and implementation of the two
Grand Challenge queries using the Apache Flink stream processor.

In reduce overall processing time and improve performance, the
central idea of our solution is to implement an event detector that
processes streamed data in parallel.

The detection task we implemented consists of the following
processing stages:

• Each input tuple is first aggregated using a tuple-based win-
dow𝑊1 of size and advance 1000 to compute the active and
reactive power features.

• The features are divided into partitions and processed by
data-parallel tasks.

• In each partition, the features are processed by the specified
algorithm[1] and each new pair of features, consisting of
active and reactive power, is added to a second window,𝑊2.
The DBSCAN[6] algorithm is then applied to this window.

• The results of all partitions are merged and verified, and
then the result is sent to a data sink.

We firstly introduce the necessary preliminary concepts in Sec-
tion 2. Then in Section 3 we describe the input dataset and present
some basic analysis results on the dataset. Section 4 shows our solu-
tion details. We discuss the technical challenges we faced in Section
5, and conclusion as well as potential optimization in Section 6.

2 BACKGROUND
2.1 NILM and DBSCAN
Non-Intrusive Load Monitoring (NILM), determines the energy
consumption of individual appliances turning on and off in an
electric load, based on detailed analysis of the current and voltage
of the total load, as measured at the interface to the power source
is described [4]. DBSCAN is the clustering algorithm used in the
Barsim paper, for each new input or backward pass, the Barism
paper used DBSCAN to update the clustering structure of data and
try detecting the event [1].

2.2 Apache Flink
In our implementation, we build a program running on Apache
Flink. Apache Flink[2] is a framework and distributed processing
engine for stateful computations over unbounded and bounded
data streams. Flink has been designed to run in all common cluster
environments, perform computations at in-memory speed and any
scale. Flink provides many powerful stream processing features
and enables easy data-parallel computation.

Flink provides a really simple programming model, facilitating
our programming tasks. Flink will take care of the big data prob-
lem, such as machine communication, fault tolerance, reliability,

208

https://doi.org/10.1145/3401025.3401760
https://doi.org/10.1145/3401025.3401760


DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Gengtao Xu, Jing Qin, and Runqi Tian

networking, etc. As a programmer, we just need to focus on the
data processing logic. Programs are constructed as a series of trans-
formations on streams and operators are connected into a directed
acyclic graph, the dataflow plan. Each operator can be run by one or
more tasks in parallel and Flink handles data partitioning, commu-
nication, and deployment. Operators can be simple event-at-a-time
transformations, such as maps and filters, windows that discretize
a stream into time intervals, or custom processing functions that
can maintain state and set timers that trigger in future moments.

Another useful feature that we leverage is Flink’s support for
event time and watermarks. This mechanism can be used to han-
dle out-of-order data streams, like the events provided as input
to Query 2. Flink’s event time represents the logical time when
an event in the stream happened. Event time is based on times-
tamps that are attached to events before they enter the processing
pipeline. Watermarks are generated by Flink sources and pushed
in the stream to inform the system about the current event time
and let operators manage the delayed data. A watermark is a global
progress metric that indicates the point in time when we are confi-
dent that no more delayed events will arrive. When a Flink operator
receives a watermark with time T, it can assume that no further
events with timestamp less than T will be received [5].

3 A GLANCE AT THE DATASET
The data provided consists of energy measurements from a smart
meter. The schema of the input tuple is thus < 𝑖, 𝑣, 𝑐 >, where
attributes 𝑖 , 𝑣 , and 𝑐 represent the tuple sequence id, the voltage,
and the current, respectively. Every 1000 input tuple corresponds
to the readings of the smart meter for 1 second (1000 milliseconds).
As the data is created continuously, batch processing or storing
data is impractical. Hence, we use a stream processing platform
to implement our solution. We make a preliminary inspection of
the data and try to analyze its basic characteristics. As shown in
Figure 1 and Figure 2, we select samples of each second from the
1st to the 5th second’s reading and the 30th to the 60th second’s
reading every 10 seconds. We find that the voltage value is periodic
with a tiny phase difference every second. We find that the current
value exposes a similar behavior. According to these characteristics,
we discuss how to deal with the missing data in section 5.4.

Figure 1: Voltage in each second’s duration

4 SOLUTION ARCHITECTURE
4.1 Processing logic
Using a single-threaded program would result in processing incom-
ing features one after the order in order, as described in the event

Figure 2: Current in each second’s duration

detection algorithm introduced in the reference paper[1]. Such an
approach could lead to bottlenecks if a part of the computation is
too slow, and render the program unable to perform in real-time.
For this reason, we decided to implement a parallel approach. The
processing logic of our solution is shown in Figure 3.

Figure 3: Processing logic

Figure 4: Extract features

4.2 Naive strategy
As described in the DEBS Challenge [3], the naive strategy for
queries (Query 1 and Query 2) only process the input stream in
a sequential manner. The processing time will be consumed a lot
while computing the balanced event due to lots of time-consuming
processes in event detector, such as updating cluster structure and

209



Grand Challenge: Optimized Parallel Implementation of Sequential Clustering-Based Event Detection DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Figure 5: Parallel strategy

the whole backward pass, showed in Figure 9. Apparently, it is
unnecessary to wait for each input result to process the next, hence,
we describe our parallel strategy in the next section. Although pro-
cessing the event stream in parallel is necessary, we did encounter
many challenges while doing it. Since the Window2 position in the
naive strategy is updated sequentially and it has high relevance
with previous states, therefore, it is not easy to update it in a parallel
fashion. Besides, the final results from the parallel method could be
wrong due to the wrong Window2 start position. We will discuss
how to fix these problems by introducing a verification process in
section 4.4.

4.3 Parallel strategy
Our parallel strategy has the following requirements:

(1) It needs to be capable of scaling up or down to different
numbers of parallel tasks.

(2) It needs to perform better than a single-threaded program.
(3) It needs to generate the same results as the single-threaded

program.

We design a divide-and-conquer strategy to parallelize the NILM
task. We introduce each step of the processing logic (Figure 3) in
the rest of this section.

First, we pull data via an HTTP request and extract features from
voltage and current values. This process is shown in Figure 4. Next,
we perform the prediction on the features in parallel, as shown
in Figure 5. Stage 1 represents the input features. We divide the
input features into different partitions. Starting from the second
partition, each subsequent partition needs to have an overlap of
𝑊2 size (Window2 size) elements with the previous partition. This
way, we can execute the prediction algorithm on each partition in
parallel and generate results for each partition without waiting for
the previous partition to finish processing. Then, we need to merge
the partial results from each partition and generate the final results

in Stage 3. For the overlapping part, we use the results from the
previous partition. As a side-effect of leveraging parallelism, the
order of original input changes, so we need to sort the results in
Stage 3. This sorting stage runs sequentially on a single thread.

4.4 Verify merged result
A naive implementation of the parallel strategy described in the
previous section might generate erroneous results. The naive im-
plementation might fail to detect certain events, for example, the
true value < 2004, 𝑡𝑟𝑢𝑒, 2004 > is not detected. The naive im-
plementation could also produce incorrect 𝑠 values in detected
events < 𝑠, 𝑑, 𝑒𝑣𝑒𝑛𝑡_𝑠 >, for example, the true value should be
< 317, 𝑡𝑟𝑢𝑒, 314 > but the detected result is < 319, 𝑡𝑟𝑢𝑒, 314 >. We
explain how to fix these two problems in this section.

Figure 6: Verification cases

Let’s first consider what causes these two problems. The answer
is, when we run the event detection algorithm in parallel partitions,
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the Window2 start position in each partition is different from when
we run the event detection algorithm in a single thread. In the
single-threaded event detection algorithm, the following two cases
can affect the Window2 start position:

• When we detect an event, we clear the Window2 contents
and the new Window2 start position is where the previous
event is detected.

• When we do not detect an event after processing more than
100 features (Window2 size), the algorithm clears the Win-
dow2.

In a single-threaded program, both cases are fine since the Win-
dow2 start position can be updated from the previous state. How-
ever, in the data-parallel algorithm, each task cannot know where
other tasks have possibly detected an event because they are exe-
cuted concurrently on disjoint partitions of the input data (in fact
they depend on the previous partition in a single-thread algorithm,
although there is no partition concept here, we just use it to illus-
trate this issue). Without knowing the previously detected event
information, each task starts its Window2 from where its parti-
tion starts, and this point can be different from the Window2 start
position in the single-threaded algorithm.

We have concluded two cases where incorrect results might
occur. These two cases are shown in Figure 6, the features around
the detected event in Stage 3 output, and the features appear before
the first detected event in each partition. To fix these incorrect
results, we record and update the correct Window2 start position
from the beginning of Stage 3 output results. When we encounter
these two cases, we have a correct Window2 start position. Then
we run the event detection algorithm again on the features included
in these two cases and output the correct results.

Case 1 includes the features around the detected event in Stage
3 output. In the program, for example, if the detected event in
Stage 3 has index 𝑚, case 1 will include features in the interval
[𝑚 − 200,𝑚 + 200]. With the correct Window2 start position, we
run the event detection algorithm on this interval and the output
results are correct.

Case 2 includes the features which are the interval starts from
partition head and ends at the first detected event in each partition.
For example, the first detected event in partition 𝑘 is at𝑚, case 2
includes features in [𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑘 𝑠𝑡𝑎𝑟𝑡 𝑖𝑛𝑑𝑒𝑥,𝑚]. With the correct
Window2 start position, we run the event detection algorithm on
this interval and output the correct results.

The verification part only needs to run the event detection algo-
rithm on the features included in these 2 cases, which is just a small
fraction in the whole stream since events are sparse. Though this is
processed in a single thread, it will not block the stream because the
computation load is low. However, it might result in higher latency,
as some input results from Stage 3 cannot be output immediately
because we need to wait for all the features in each case to arrive
in order to run the event detection algorithm.

4.5 Time analysis
Assuming the system is processing a dataset with 𝑁 batches of the
same size. It takes 𝑡𝑑𝑎𝑡𝑎 time to request one batch data and convert
it to a corresponding feature. The cost of processing event detect

tasks on one feature is 𝑡 . As event detect algorithm is applied on
features during processing, 𝑡 is much larger than 𝑡𝑑𝑎𝑡𝑎

In the sequential model of processing is shown in Figure 7, the
overall run time of 𝑁 batches of data is 𝑁 × (𝑡 + 𝑡𝑑𝑎𝑡𝑎).

Figure 7: Time consumption of sequential processing

In our parallel implementation, suppose the system is working
with a parallelism of 𝑃 . Since the data batches are generated from a
single-thread data source, and as we mentioned above, the time for
generating one feature is 𝑡𝑑𝑎𝑡𝑎 . therefore, each task thread needs
to wait for time 𝑡𝑑𝑎𝑡𝑎 to get features from the data source. Then for
each parallel task that processes 𝑃 batches, the average time cost of
merging and verifying stage is 𝑡𝑚𝑣 . Since the distribution of events
in data are sparse, 𝑡𝑚𝑣 is much less than the processing time 𝑡 over
one feature. As is shown in Figure 8, for every round of parallel
processing over 𝑃 features, the time cost 𝑡𝑚𝑝 = 𝑡 + (𝑃 − 1) × 𝑡𝑑𝑎𝑡𝑎 .
So it spends 𝑁

𝑃
× 𝑡𝑚𝑝 processing the whole dataset of 𝑁 batches.

Finally, we can derive an inequality (1) by an assumption: 𝑡 >
𝑡𝑚𝑣 𝑎𝑛𝑑 𝑡 > 𝑡𝑑𝑎𝑡𝑎 , and do the following steps:

𝑁 (𝑡 + 𝑡𝑑𝑎𝑡𝑎) >
𝑁

𝑃
(𝑡 + 𝑡𝑑𝑎𝑡𝑎 (𝑃 − 1) + 𝑡𝑚𝑣)

⇒𝑃 · 𝑡 + 𝑃 · 𝑡𝑑𝑎𝑡𝑎 > 𝑡 + 𝑃 · 𝑡𝑑𝑎𝑡𝑎 − 𝑡𝑑𝑎𝑡𝑎 + 𝑡𝑚𝑣

⇒𝑡 (𝑃 − 1) > 𝑡𝑚𝑣 − 𝑡𝑑𝑎𝑡𝑎

⇒𝑡 >
𝑡𝑚𝑣 − 𝑡𝑑𝑎𝑡𝑎

𝑃 − 1
,𝑤ℎ𝑒𝑟𝑒 𝑃 ≥ 2, 𝑃 ∈ N+ (1)

• If 𝑡𝑚𝑣 < 𝑡𝑑𝑎𝑡𝑎 , then the inequality (1) holds.
• If 𝑡𝑚𝑣 ≥ 𝑡𝑑𝑎𝑡𝑎 , since 𝑡 > 𝑡𝑚𝑣 and 𝑡 > 𝑡𝑑𝑎𝑡𝑎 as we assumed,
even if 𝑃 = 2, the inequality (1) holds.

Therefore, we can conclude that the inequality (1) must hold
under the assumption we made and our parallel strategy can always
be faster than the naive strategy.

5 CHALLENGES
We faced many challenges while designing our strategy and imple-
menting the parallel algorithm. One of them is transforming the
event detector workflow into Flink stream processing operators
in order to accelerate this algorithm by running it in parallel. An-
other challenge was tuning the trade-off between our verification
part which is slow but achieves the best accuracy. In addition, the
single-threaded implementation of the grader placed limits on the
performance of our parallel algorithm. Finally, the missing data in
Query 2 can hurt the achieved accuracy a lot. At first, we wanted to
fit the function of the data since it is periodic, however, we found
it to be extremely difficult. In this section, we clarify why these
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Figure 8: Time consumption of parallel processing

challenges occurred and provide some solutions or the decisions
we made to overcome some of them.

5.1 Transforming the event detector into
stream processing

In the beginning, we wanted to find a way to transform the event
detector into Flink stream processing operators since this is one of
themost time-consuming parts of our architecture. If we could break
its logic into separate operators, we could boost its performance by
leveraging Flink’s task and operator parallelism. Unfortunately, we
found this task to be very challenging to complete in the limited
time we had in hand. Figure 9 shows how the workflow of the event
detector is highly coupled, whichmakes it very difficult to transform
this event detector algorithm into separate operators. Hence, we
decided to keep its implementation inside a single operator and
focus our optimization efforts on other parts.

5.2 Verification efficiency
Since the verification stage performs the major job of correcting the
results from upstream, it needs to wait for a few events. Hence, the
verification process may not be very efficient. However, our results
show that our method achieves a reasonable speed and the highest
accuracy. From our perspective, some of the performance overhead
may be caused by the JVM which we could have avoided by fine-
tuning. Besides, try implementing this verification part in C++ can
also give possibilities of improving the speed performance. There-
fore, our parallel algorithm and verification process can achieve a
balance between high accuracy and speed in the meantime.

5.3 Single-thread grader
It is not efficient if we perform the synchronized HTTP post in the
same thread which also processed data. Hence we send all the post
requests into a post queue once we finished the data processing,
then we started an individual thread to post our results if the post

Figure 9: Flowchart of prediction

queue is not empty. This can improve the latency and total run
time since we did not need to wait for the synchronized post to be
finished and can start processing the next feature immediately.

Besides, since the data source provided by the grader is single-
thread, the power of our parallel method can be maximized if we
could perform concurrent HTTP requests.

5.4 Dealing with missing data
Since the data of Query 2 can be missing, we need to deal with
this case so that the prediction can be more accurate. To handle
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lost records, we initially sought an algorithm to simulate the lost
data. As we can see in Figure 1, the voltage curve is almost the
𝑠𝑖𝑛𝑒 function since it is alternating (which is periodic), hence we
could fit the voltage functions very easily. However, as we can see
in Figure 2, it is very difficult to simulate current data because the
current has a lot of randomnesses even if it is periodic. Therefore,
we decided to simply copy the latest good feature, and compensate
for the missing data from that good feature. We believe this is a
good strategy since the lost data feature is singular so that it could
be safe to deal with it through this approach.

6 CONCLUSION AND FUTUREWORK
Weproposed a novel parallel method for this challenge and achieved
both accuracy and speed by our unique verification method. Al-
though we did not achieve the best speed, we do believe it is not
the defect of our method and we can definitely improve the speed
in the future.

There are a lot of tricks that we can do to optimize our work.
The first thing as we mentioned above is trying to implement our
method in C++ or Rust which are both high-performance languages
or tune JVM performance as well as introduce AOT or JIT. The other
thing that we can do is trying to modify our watermark strategy to
heuristic watermark which can have a dynamic bond depends on
the quality of the stream.
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