
Doctoral Symposium: Pre-processing and Data Validation in IoT
Data Streams

Philsy Baban
Databases and Information Systems Group

TU Ilmenau, Germany
philsy.baban@tu-ilmenau.de

ABSTRACT
In the last few years, distributed stream processing engines have
been on the rise due to their crucial impacts on real-time data pro-
cessing with guaranteed low latency in several application domains
such as financial markets, surveillance systems, manufacturing,
smart cities, etc. Stream processing engines are run-time libraries
to process data streams without knowing the lower level stream-
ing mechanics. Apache Storm, Apache Flink, Apache Spark, Kafka
Streams and Hazelcast Jet are some of the popular stream process-
ing engines. Nowadays, critical systems like energy systems, are
interconnected and automated. As a result, these systems are vulner-
able to cyber-attacks. In real-world applications, the sensing values
come from sensor devices contains missing values, redundant data,
data outliers, manipulated data, data failures, etc. Therefore, our sys-
tem must be resilient to these conditions. In this paper, we present
an approach to check if there is any above mentioned conditions by
pre-processing data streams using a stream processing engine like
Apache Flink which will be updated as a library in future. Then, the
pre-processed streams are forwarded to other stream processing
engines like Apache Kafka for real stream processing. As a result,
data validation, data consistency and integrity for a resilient system
can be accomplished before initiating the actual stream processing.

CCS CONCEPTS
• Information systems→ Data cleaning; Integrity checking;
Stream management.

KEYWORDS
Stream processing, data pre-processing, data validation, resiliency

ACM Reference Format:
Philsy Baban. 2020. Doctoral Symposium: Pre-processing and Data Vali-
dation in IoT Data Streams. In The 14th ACM International Conference on
Distributed and Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual
Event, QC, Canada. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3401025.3406443

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3406443

1 INTRODUCTION
In the Big Data era, data comes from different sources such as sen-
sors, devices, customer databases, click-stream logs, transactional
applications, mobile applications, social media, etc. mostly in real-
time. And this enormous amount of data is analyzed depending on
the use case. The results or conclusions gathered during the data
analysis will be useful only when the data received from the data
sources are valid and consistent. Thus to ensure the data quality,
data must be validated before initiating any other operations. Also,
the storage of unlimited data is difficult. Therefore, this unbounded
data is processed in real-time and retain only the useful bits using a
stream processing engine. Stream processing engines are run-time
libraries to process streaming data without dealing with lower-level
streaming mechanics. Stream processing can either be stateless or
stateful. In stateless processing, data streams can be processed in-
dependently while in stateful processing, the information gathered
from the processed records are also used.

In this paper, we discuss our approach based on the energy
systems domain. The integration of new IoT technologies to the
existing Power Grid results in a reliable and more flexible Smart
Grid that enables the two-way flow of electricity and data. Due
to this adaptation, electric meters are now smart meters with sen-
sors that can send data records about the energy consumption
or energy generation on a defined time interval. As a result, the
direct inspection of energy meters is no longer required. At the
same time, the quality of data is reduced due to the presence of
imperfections, redundancies or inconsistencies caused by sensor
failures, anomalous situations, exogenous factors, cyber attacks
like data manipulation, etc [7]. The data record may contain zero or
negative values as the amount of energy consumed, the amount of
energy generated greater than the total generator capacity, missing
data, continuous arrival of the same records, etc. are some of the
examples of imperfections in data streams. Therefore the incoming
records must be validated before processing the data records. For
this, data pre-processing is the solution. Otherwise, the low quality
data provide incorrect results.

Data pre-processing [10] refers to the processing of data streams
that contain missing data, noisy data, inconsistent and redundant
data. Data transformation and discretization are the widely used
data pre-processing algorithms. Feature selection is one of the main
categories in data transformation: it selects only the relevant fea-
tures and non-redundant attributes. Data discretization is defined
as a process of dividing the domain of the variables into a finite set
of non-overlapping intervals with minimal loss of information.

In this field of research, we propose an approach to perform data
validation as a part of pre-processing to validate the streaming data
received from the data sources like smart meters, to enhance the

226

https://doi.org/10.1145/3401025.3406443
https://doi.org/10.1145/3401025.3406443
https://doi.org/10.1145/3401025.3406443

quality of data. The remaining part of this paper is organized as
follows: Section 2 overviews the related work in the area of data pre-
processing; Section 3 introduces our data pre-processing approach;
Section 4 provides the preliminary results; Section 5 concludes the
paper and proposes some future work.

2 STATE OF THE ART
Data pre-processing [10] is one of the main tasks in data mining
as it enhances the quality of data. Apache Spark, Apache Flink,
Apache Kafka, Apache Samsa, and Apache Storm are some of the
main stream processing engines. Apache Storm [9] is the oldest real-
time stream processing engine that is suitable for non-complicated
streaming use cases. Even though it has very low latency and high
throughput, it does not support state management and advanced
features like aggregations, sessions, etc. In Apache Kafka [6], Kafka
Streams API is the client library used to process data stored in
Kafka clusters. It is fault-tolerant and supports stateful processing.
Though Kafka Streams API is a very lightweight library, it is not
possible to use Streams API without Kafka. In Apache Samsa [9],
a publish/subscribe task is used. It uses Apache Kafka messaging
system to offer buffering, fault tolerance, and state storage. Samza
is good at maintaining states and provides high throughput. In
SPEs, it is possible to add user-defined functions to perform stream
processing operations. Since most of the SPE do not have a library
of operators to perform data pre-processing, user-defined functions
are used to implement the pre-processing tasks.

At the same time, Apache Spark [12] and Apache Flink [5] are
hybrid processing systems that support batch and stream process-
ing, where Spark is designed for large-scale in-memory data pro-
cessing, and Flink focuses on distributed streams and batch data
processing. Both SPEs provide libraries known as BigDaPSpark
and BigDaPFlink for data pre-processing. BigDaPSpark [8][11] is
a library focused on the static data pre-processing built on top of
Apache Spark to support feature selection, data reduction to ob-
tain a reduced set of original data, noise filtering, missing values
imputation, discretization and imbalanced learning for balancing
the dataset. Noise filtering contains two sub-libraries, one for noise
removal and the other for noise filtering. BigDaPFlink [8][2] is a li-
brary for real-time data pre-processing for Apache Flink. It includes
six data pre-processing algorithms based on the discretization and
feature selection problems.

The BigDaPSpark and BigDaPFlink libraries mainly concentrate
on the feature selection and discretization, and not on data valida-
tion. Therefore, our aim is to validate the incoming data as apart of
pre-processing.

3 PROPOSED APPROACH
Nowadays, traditional energy systems are transformed into a dis-
tributed intelligent energy systems called smart grids where energy
meters are now sensors that can send data continuously. As a re-
sult, huge amount of data is generated where human supervision
is not possible. Thus, the probability of finding inconsistencies and
imperfections in streaming data is high. Consequently, low quality
of data makes false predictions or incorrect results that can affect
the entire functioning of the system.

Following are the common data quality problems,

• Missing data: The incoming data stream records may contain
missing data fields. For example, if the customer identifier
or meter identifier is missing in the record received from the
smart meter, then the processing of this record is a wastage
of time and resource. Therefore the incoming data must be
complete. Otherwise, missing data generates inconsistencies
that have a critical impact on the stream processing step.

• Data outliers: The data stream records may contain data out-
liers due to some errors or data manipulation. For example, if
the meter reading of the energy generated is greater than the
maximum generator capacity, then there are outliers. This
has to be identified beforehand.

• Inconsistent data: The data records from the energy meters
may contain inconsistent data. For example, the amount of
energy consumed must not be less than or equal to zero.
The reason for inconsistencies may be due to sensor failures,
cyber-attacks, etc., and processing of this data results in an
inefficient system that helps to bypass security features [3].

• Irrelevant data: Data records received from sensors contains
data that is not needed for further processing. For example, if
the data records consist of data fields such as device id, device
id type, measured time, profile, reading reason and measured
value. Here, device id type is an alternate id to identify the
device, profile is to specify the profiles as a meter can have
multiple profiles and reading reason is a status data to show
whether it is a periodic reading or a manual reading. In this
record, device id type and reading reason is not needed in the
next step of processing. So we should eliminate these data
fields. Otherwise, this irrelevant data results in wastage of
memory.

• Duplicate data: Stream data contains duplicate records. For
example, the same data record is received multiple times for
processing. This is mainly due to some attacks or failures.
Consequently, the processing of duplicate records reduces
the performance of an SPE and provides incorrect results.

Thus, to improve the quality of streaming data, data streams must
be validated. Since pre-processing of streaming data increases the
quality of data, data validation should also be included as a task
in data pre-processing. Even though data validation tools are al-
ready available, they are not designed in combination with an SPE.
As we mentioned in section 2, data pre-processing is performed
either using user-defined functions or using libraries. In general,
feature selection and discretization are the main two tasks in data
pre-processing. But, if we do not have valid data, then the pre-
processing is useless. Therefore, data validation in streaming data
is significantly important. So, we must validate streaming data
along with other tasks in pre-processing. In addition, the storage of
data that continuously generated from thousands of data sources
like sensors is no longer possible. These unbounded data should be
processed either in batch or in real-time. For critical systems like
energy systems, the information must be up to date to monitor and
discover if there are any problems that must be solved immediately.
Therefore, we use real-time stream processing.

Figure 1 shows the proposed architecture of the solution. In the
figure, data sources like smart meters generate continuous data
streams. Since the storage of data streams are not possible, data

227

streams are forwarded to a stream processing engine for real-time
processing. Data validation and stream processing operations are
performed using stream processing engines. In our approach, we
use two stream processing engines, one for the data validator and
the other for actual stream processing. This is because data vali-
dation is not specific to a particular use case. That is, for almost
all types of streaming data, the data records must be validated.
Presently, there is no SPE that provides a library to perform data
validation. Therefore, here we use a lightweight SPE that can be
easily integrated to any other SPE and can perform stateful pro-
cessing where order based processing is required for validation. In
a data validator, we check whether the incoming data has any of
the conditions such as missing data, inconsistent data, data out-
liers, irrelevant data, and redundant data. If the data streams do not
match any of the conditions, it is then forwarded for actual stream
processing. Finally, processed data is either stored in a database or
used for monitoring or report generation.

Figure 1: Proposed system architecture

In an SPE, stream processing can be either stateful or stateless.
Thus, operators can be mainly classified as stateful and stateless
operators. In stateless stream processing, computations are per-
formed on the current inputs without considering any previous
state. Filter, map, flatmap, etc., are some of the stateless operators.
A stateless operator can be easily parallelized as it processes each
record independent of other records.

In contrast, stateful stream processing requires an additional
input called state for processing. Window, joins, aggregations, etc.,
are some of the operators that require state for computations. The
stateful stream processing can be done using any of the methods
such as window, machine learning, pattern recognition, and stream-
stream joins. In stream-stream joins [13], an input stream is buffered
as a streaming state for the future input streams. So, if the future
stream match with the past stream, then the system can gener-
ate joined results. For example, stream-stream joins are used for
advertising the matching ads and impressions when a user visits
a website. In pattern matching over event streams [1], incoming
events are compared against the complex patterns for a defined
time period. In the real world, pattern matching is used to recognize
suspicious financial transactions, clickstream analysis, etc. In the
machine learning approach, machine learning algorithms are used
to identify the models based on the datasets over a time period. For
example, to monitor the trend of the incoming stream, the corre-
sponding model is identified based on the dataset using a machine
learning algorithm. Finally, window operators help us to control
how to group records for further processing. This can be based

on time or sessions. For example, a window operator can be used
to count the number of customers that purchased some goods or
services from an E-commerce website, where each customer can
have multiple transactions.

Based on the type of operations that should be implemented on
the data validator, data quality problems can be classified into two
as stateless and stateful.

(1) Stateless processing
Following are the data quality problems and their solutions
that requires stateless stream processing.
• Missing data: In this step, we search all the data fields
in the incoming record that have data or not. If any of
the mandatory fields like unique identifiers are missing,
then the tuple is deleted. If the data is missing in the fields
where the data can be fetched during actual processing is
maintained by setting a status and forwards to the next
step of data validator.

• Data outliers: Here, we check if the tuple contains the
values that are outside the range of expected data. If it is
not, then we can say that there are data outliers. The cause
of data outliers is usually due to errors or attacks. Also, in
this section, we cross-check the data fields to identify the
manipulated data. If any data outliers are identified, then
this tuple is deleted.

• Inconsistent data: In this step, we check all the fields in the
incoming tuple is valid or not. That is, the data fields do
not contain inconsistent values such as negative numbers,
string at the place of integers, etc. All the identified tuples
with inconsistent data will be deleted in this step.

• Irrelevant data: For stream processing, we do not have
to maintain all the data fields as it results in memory
wastage. Therefore, we filter all the irrelevant data that is
not required and forwards the data records with selected
fields to the next step of stream processing.

(2) Stateful processing
For the identification and removal of duplicate data from the
data streams, we require stateful processing. That is, here
we maintain a state, to check whether if the data record is
already processed or not. If the same record arrives in the
SPE multiple times, then this can be due to some attacks or
failures. Duplicate records in the streaming data will affect
the performance of SPE during actual stream processing.
Therefore, these records will be deleted during this step.

In the data validator, we add a status field to the data record to
identify the records that has problems. If the data record does not
match any of the above-mentioned conditions, then the status is
set as "VAL", to indicate that the data is valid. Otherwise, the pre-
processing status varies based on resiliency conditions such as
"MIS","OUT","INC" and "DUP". For feature selection, we consider it
as valid tuple. Also, using pre-processing status, the system can be
evaluated.

4 PRELIMINARY RESULTS
In the previous section, we discussed about using two stream pro-
cessing engines, one for data validation and the other for actual

228

stream processing. Nowadays, several stream processing frame-
works are available and each has its own features. Therefore, de-
pending on the use case, we choose the framework. Since Apache
Flink [9] is a true SPE based on the concept of streams and trans-
formation and can provide low latency with high throughput, the
data validator is implemented on Apache Flink. And the actual
stream processing is performed using Kafka Streams as it provides
a set of features such as fault tolerance, scalability, stateless and
stateful processing, supports Kafka Connect to connect to other
applications and databases. In Kafka, records are published in topics.
From these topics, consumers can subscribe records. Here, we store
pre-processed data streams on topics based on the pre-processing
status. As a result, the performance of Kafka will be increased.

Apache Flink provides different data sources and sink operators.
In our system, a user-defined source function is used to generate
data streams from a dataset in CSV format. The dataset provided by
Ausgrid[4] is used as the data source. In this dataset, the data has
been collected from 300 randomly selected solar customers on a do-
mestic tariff for the period starting from 1 July 2010 to 30 June 2013.
In this dataset, each record contains 7 data fields such as Customer
ID to store the customer data and the value ranges from 1 to 300,
Postcode to store the location of the customer, Generator Capacity
to record the solar panel capacity of each customer, Consumption
Category is a two-letter code which is used to show whether me-
ter value is consumption or generation, Date is in DDMMMYYYY
format, time is of the format 0:30,,00:00 where meter reading
is recorded in every 30 minutes and Row Quality shows whether
the actual electricity consumption or generation is recorded by the
meter or if it is an estimate value.

For data validator, the following three operators are used to
handle the data quality problems,

• filter : Presently, the data quality problems such as missing
data, inconsistent data, data outliers, and irrelevant data are
identified and deleted from the incoming data records are
performed using this operator.

• window: Stateful operations such as identification and re-
moval of duplicate records are performed using this operator.
Flink provides four types of window assigners such as tum-
bling windows, sliding windows, sessionwindows and global
windows. Tumbling window is used in our approach.

• map: Map operator is used for the data transformation. In
our dataset, each record contains six data fields. Once all the
stateless and stateful operations are performed on the data
record, the six data fields in the record are combined to a
single string separated using delimiters. This transformation
is performed in order to make the sending of data to Kafka
easier.

A built-in sink connector for Kafka in Flink is used for sending data
to Kafka. Currently, all the validated tuples are stored in a single
topic inside Kafka.

5 CONCLUSIONS AND FUTUREWORK
In the age of digitization, the existing and upcoming IoT applica-
tions increases the human comfort and efficiency. At the same time,
they face wide attacking surfaces. In energy system domain, the
system must protect itself against cyber attacks for the efficient

generation, transmission, distribution and real-time monitoring
of electric energy in the smart grid. In order to make the system
resilient to situations like missing values, redundant data, data
outliers, manipulated data, data failures, etc., we perform valida-
tion of data streams. Data validation is performed as a task in data
pre-processing. By data pre-processing, the quality of data is in-
creased. At the same time, data validation, data consistency and
data integrity for a resilient system can be achieved. Also, it reduces
unnecessary work, thereby increase the performance of the SPE
during actual stream processing.

In this paper, we added basic pre-processing scenarios. In the
future, it will be better to perform data analysis to study energy
consumption and generation patterns. During this analysis, we can
identify different possibilities, or we can identify the current trends
of energy generation or consumption that may help in adding more
data pre-processing or actual processing scenarios to increase the
resiliency of the system. Presently, the data validator that we dis-
cussed above is based on energy management domain. As the next
step, other domains will also considered and add the necessary oper-
ations in the data validator. Then, the validator will be updated as a
library that can be used in different stream processing applications.

ACKNOWLEDGMENTS
This work is funded by the BMBF (Bundesministeriums für Bildung
and Forschung) under grant 01IS18074A.

REFERENCES
[1] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Ef-

ficient pattern matching over event streams. https://doi.org/10.1145/1376616.
1376634

[2] Alejandro Alcalde-Barros, Diego García-Gil, Salvador García, and Francisco Her-
rera. 2019. DPASF: a flink library for streaming data preprocessing. Big Data
Analytics 4, 1 (2019), 4.

[3] Malik Nadeem Anwar, Mohammad Nazir, and Khurram Mustafa. 2017. Security
threats taxonomy: Smart-home perspective. In 2017 3rd International Conference
on Advances in Computing, Communication & Automation (ICACCA)(Fall). IEEE,
1–4.

[4] Ausgrid. 2020. Ausgrid - Solar home electricity data. URL
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-
electricity-data (2020).

[5] Apache Flink. 2020. Stateful Computations over Data Streams. URL
https://flink.apache.org/ (2020).

[6] Apache Software Foundation. 2017. Apache Kafka: A distributed streaming
platform. URL https://kafka.apache.org/ (2017).

[7] Salvador García, Sergio Ramírez-Gallego, Julián Luengo, José Manuel Benítez,
and Francisco Herrera. 2016. Big data preprocessing: methods and prospects. Big
Data Analytics 1, 1 (2016), 9.

[8] Diego Garcıa-Gil, Alejandro Alcalde-Barros, Julián Luengo, Salvador Garcıa, and
Francisco Herrera. 2019. Big Data Preprocessing as the Bridge between Big Data
and Smart Data: BigDaPSpark and BigDaPFlink Libraries. (2019).

[9] Vairaprakash Gurusamy, Subbu Kannan, and K Nandhini. 2017. The Real Time
Big Data Processing Framework: Advantages and Limitations. INTERNATIONAL
JOURNAL OF COMPUTER SCIENCES AND ENGINEERING 5 (12 2017), 305–312.
https://doi.org/10.26438/ijcse/v5i12.305312

[10] Julián Luengo. 2020. Big Data Preprocessing: Enabling Smart Data. Springer
Nature.

[11] Weiwei Shi, Yongxin Zhu, Tian Huang, Gehao Sheng, Yong Lian, Guoxing Wang,
and Yufeng Chen. 2017. An Integrated Data Preprocessing Framework Based on
Apache Spark for Fault Diagnosis of Power Grid Equipment. Journal of Signal
Processing Systems 86, 2-3 (2017), 221–236.

[12] Apache Spark. 2020. Apache Spark: Lightning-fast cluster computing. URL
http://spark. apache. org (2020).

[13] Apache Spark. 2020. Structured Streaming Programming Guide. URL
https://spark.apache.org/docs/latest/structured-streaming-programming-
guide.html (2020).

229

https://doi.org/10.1145/1376616.1376634
https://doi.org/10.1145/1376616.1376634
https://doi.org/10.26438/ijcse/v5i12.305312

	Abstract
	1 Introduction
	2 State of the art
	3 Proposed Approach
	4 Preliminary results
	5 Conclusions and future work
	Acknowledgments
	References

