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ABSTRACT
The data streaming paradigm was introduced around the year
2000 to overcome the limitations of traditional store-then-process
paradigms found in relational databases (DBs). Opposite to DBs’
“first-the-data-then-the-query” approach, data streaming applica-
tions build on the “first-the-query-then-the-data” alternative. More
concretely, data streaming applications do not rely on storage to
initially persist data and later query it, but rather build on contin-
uous single-pass analysis in which incoming streams of data are
processed on the fly and result in continuous streams of outputs.

In contrast with traditional batch processing, data streaming ap-
plications require the user to reason about an additional dimension
in the data: event-time. Numerous models have been proposed in the
literature to reason about event-time, eachwith different guarantees
and trade-offs. Since it is not always clear which of these models
is appropriate for a particular application, this tutorial studies the
relevant concepts and compares the available options. This study
can be highly relevant for people working with data streaming
applications, both researchers and industrial practitioners.
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1 OVERVIEW
This paper overviews the topics that are covered by this tutorial.
All the following sections, which are included in the tutorial and
presented in the same order they appear in this publication, provide
short summaries of the covered topics, with references and links
to the relevant literature. In order for the tutorial to target a wide
audience, we first cover basic concepts about the data streaming
paradigm. All the material used for this tutorial can be found at
https://github.com/vincenzo-gulisano/debs2020_tutorial_event_time.

2 BASIC CONCEPTS
Data streaming applications are used in many large and distributed
systems [2, 6, 13, 18, 19, 25, 34] to process data coming in the form
of unbounded streams of tuples. Tuples are comprised of a set of
attributes according to their schema. Each tuple carries its event-
time as one of its attributes, which we refer to as its timestamp. Each
streaming application, called continuous query (or simply query),
is a Directed Acyclic Graph (DAG) of streaming operators that
transform the tuples delivered by a set of data sources, and produce
new streams of tuples that are eventually delivered to end-users.

Streaming operators can be distinguished into two main classes:
stateless and stateful. On the one hand, stateless operators pro-
cess each input tuple individually and do not maintain a state that
evolves according to the tuples being processed. Filter (used to dis-
card or route tuples) andmap (used to change the schema of tuples)
are common stateless operators provided by both pioneer and mod-
ern Stream Processing Engines (SPEs) [1, 2, 8, 10, 12]. On the other
hand, stateful operators produce results that depend on multiple
input tuples. Because of the unbounded nature of data streams,
stateful analysis is performed over portions of the data. Such por-
tions, called windows, are usually based on the notion of event-time
carried by tuples through their timestamps (in the literature, these
windows are also referred to as time-based windows). Aggregate
(used to combine windows of input tuples into one output tuple)
and join (used to match tuples coming from different streams if
such tuples carry event-times that are not far away more than a
given window size) are common stateful operators that are also
found both in pioneer and newer established SPEs [1, 2, 8, 10, 12].

Figure 1 shows a sample query composed of three operators. The
query (originally presented in [29]) is based on the Linear Road
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speed==0
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count(),distinct(pos)
WS=120 sec, WA=30 sec
group-by=car_id

Filter
count==4 AND dist_pos==1

Source
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08:00:01 a 0 X

08:00:31 a 0 X
08:00:02 b 55 Y

08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

08:00:00 a 4 1
ts car_id count dist_pos

ts car_id count dist_pos
08:00:00 a 4 1
08:00:00 c 1 1

08:00:01 a 0 X
08:00:31 a 0 X
08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

Figure 1: Sample continuous query (figure from [29]) spot-
ting stopped vehicles in the Linear Road benchmark [5].

benchmark [5], which simulates vehicular traffic on linear express-
ways that are monitored to detect accidents and compute variable
tolls. Periodic position reports are generated every 30 seconds from
each vehicle and are later processed to identify stopped vehicles,
that is, vehicles for which the last four consecutive reports all have
zero speed and share the same position. In the example, the ag-
gregate’s window size (𝑊𝑆) and window advance (𝑊𝐴) are set to
120 and 30 seconds, respectively. Because of this, the aggregate
emits, for each vehicle, a result every 30 seconds, based on the data
received in the last 120 seconds.

3 EVENT-TIME ORDERING AND STATEFUL
STREAMING ANALYSIS

Since streams are, by definition, unbounded and processed con-
tinuously by streaming queries, recent events usually carry more
important and fresher information than past ones [11]. Because of
this, many contributions in the literature work under the assump-
tion that streams are fed to streaming queries in timestamp-order
by sources that rely on protocols that guarantee ordered delivery.
When each stateful operator of a streaming query is fed a single
stream of data that is timestamp-sorted, the operator can trivially
determine if it has received all the data that belongs to a certain
window covering a portion of event-time. Thus, the operator can
correctly emit the result of the analysis over that data.

For instance, an aggregate operator counting the tuples observed
in a stream over a certain time interval [𝑡1, 𝑡2) can (i) start counting
tuples as soon as it receives an input tuple with a timestamp in the
interval and (ii) correctly produce the resulting count as soon as
it receives an input tuple carrying a timestamp falling outside the
interval. However, if the input stream of the aggregate operator is
not timestamp-sorted, it is not trivial to determine when a window
will stop receiving further tuples. In our example, producing the
result for a specific time interval [𝑡1, 𝑡2) as soon as an input tuple
with a timestamp greater than or equal to 𝑡2 is received, could lead
to an imprecise result if later arrivals can still carry timestamps in
that interval.

Similar challenges hold for the join operator, too. Since its win-
dow size determines the maximum distance (in event-time) for
pairs of tuples from different streams, it is simple to decide when

to discard a certain tuple based on the event-time of other incom-
ing tuples, under the assumption of timestamp-sorted data. Such a
decision is not trivial, nonetheless, if the assumption does not hold.

4 CAUSES OF EVENT-TIME DISORDER IN
DATA STREAMS

Streams that are not sorted on their event-time can be observed in
streaming queries because of two main reasons. On the one hand,
data sources themselves can emit unsorted streams because of the
communication medium they use to forward their data. This can be
the case, for instance, when sources rely on the UDP protocol [7].
On the other hand, operators can be fed out-of-timestamp-order
tuples when such tuples come from multiple streams. This can
happen because of two main reasons, the first being the semantics
of the operators. A join operator, for instance, is defined to match
tuples from different streams. Even assuming each such stream is
timestamp-sorted, asynchronous or distributed execution can result
in arbitrary interleaving of tuples from distinct streams [12]. The
second reason is that of multi-threaded asynchronous executions
of continuous queries themselves, including distributed executions
(inter-operator parallelism [14]), parallel executions (intra-operator
parallelism [14]), as well as fault-tolerant execution, in which oper-
ators could be fed by multiple upstream replicas for availability as
well as performance reasons [19].

5 ENFORCING TOTAL EVENT-TIME
ORDERING ACROSS STREAMING QUERIES

When the stream generated by each data source or parallel instance
of an operator is timestamp-sorted, total ordering can be enforced
across the whole query. This has been initially discussed in pioneer
SPEs such as Borealis [8] and StreamCloud [14]. In a nutshell, the or-
dering is performed (1) by merge-sorting timestamp-sorted streams
before any operator with more than one input stream and (2) by
relying on operators that produce timestamp-sorted output streams.
Several approaches have been discussed in the literature. In [12, 14],
the authors rely on a dedicated operator, the Input Merger, which
maintains dedicated queues for each input stream and forwards
each input tuple if the latter is the one with the smallest event-time
among the earliest tuples stored in each queue. A tuple that fulfills
this requirement is defined as ready in [15, 16, 27, 34]. A similar
operator, SUnion, is proposed in [8]. However, that operator does
not merge-sort each input tuple as soon as it is received, but in-
stead performs the sorting periodically over batches of input tuples.
Finally, authors in [15, 16, 28] propose a streaming-tailored data
structure, ScaleGate, that also merges input streams deterministi-
cally. While this data structure merge-sorts each input tuple upon
reception and forwards it as soon as it is ready (as done by the
Input Mergers in [12, 14]), it opens up for key trade-offs about the
use of shared data structures in SPEs [27]. As discussed in [15],
when tuples coming from 𝑛 timestamp-sorted input streams are
merged relying on 𝑛 individual queues (one for each input stream),
threads delivering tuples incur an O(1) cost to add a tuple in their
respective queue, while the thread in charge of merge-sorting the
tuples incurs an O(𝑛) cost to check whether each tuple is ready.
On the other hand, when relying on a shared data structure, as
ScaleGate’s modified skip-list, each thread delivering a tuple can
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pay a higher cost — O(log𝑛) in expectation — to add a tuple, thus
easing the cost paid by the thread delivering ready tuples (to O(1)
in this case) and resulting in better scalability.

6 PROS AND CONS OF TOTAL ORDERING
Total event-time ordering offers interesting trade-offs in terms of
efficiency and consistency. On the one hand, merge-sorting oper-
ations incur an extra computation expense and increased latency
(since whether a tuple can be immediately processed once for-
warded to an operator depends on the arrival of tuples from other
streams, too) [8, 14–17]. On the other hand, timestamp ordering
enables the benefits discussed in the following.

The most common benefit is that of deterministic execution [8,
12, 22, 29]. Since tuples’ processing order does not depend on the
tuple transmission latency from one operator to another nor on the
interleaving of tuples fed to an operator withmultiple input streams,
deterministic merge-sorting of the input streams of an operator
allows the operator’s processing step to depend exclusively on the
event-time carried by the tuples themselves [29]1.

Other benefits enabled by deterministically merging the streams
fed to operators and queries include:

(1) synchronization among replicas for active standby fault tol-
erance [8, 19],

(2) eager purging of stale state from stateful operators, which
helps in keeping the size of stateful operators’ states at its
minimum [14–16],

(3) consistent assignment of sequence numbers to tuples fed to
tuple-based rather than time-based windows [16, 19] (tuple-
based windows do not advance based on tuples’ timestamps,
which makes the synchronization of parallel threads operat-
ing on them more challenging),

(4) synchronization of threads analyzing in parallel data main-
tained in shared data structures, be it for performance and
load balancing purposes [15, 16] or for efficient adaptive
reconfigurations [27], and

(5) designing efficient backward provenance techniques [29].
It is important to notice, nonetheless, that total ordering can

be a sufficient condition for deterministic execution but is not a
necessary one, as we also explain in the following section.

7 RELAXATIONS FROM TOTAL EVENT-TIME
ORDERING

While a portion of the streaming literature builds on the assumption
of sorted streams, there is also a large body of related works dis-
cussing relaxations that do not require nor assume that all streams
are timestamp-sorted. Such relaxations are discussed for the context
in which data sources themselves cannot deliver timestamp-sorted
streams or when trading off result accuracy for processing costs
(e.g., latency) is beneficial in a given streaming application [9].

The most common technique is for streaming queries to rely on
watermarks (also referred to as punctuations, heartbeats, or boundary
tuples in the literature). For example, a watermark can be a special
timestamp, which is forwarded through a stream, and which is

1A common assumption in many related works is that streaming operators themselves
define deterministic functions, with no randomness in the semantics they enforce.

smaller than or equal to the timestamp of all tuples coming after
it (the watermark) in the stream. With watermarks, deterministic
execution can still be supported for many streaming queries. For
an aggregate to correctly produce deterministic results by relying
on watermarks, the output of each window can safely be produced
only after a watermark falling after such a window is received from
each of the aggregate’s input streams. For a join to safely discard a
tuple that should no longer be matched with other incoming ones,
such tuple can safely be discarded once its timestamp plus the join’s
window size is smaller than any of the latest watermarks received
from each of the join’s input streams. Many variations for different
watermarking techniques are discussed in the literature [3, 8, 19,
24, 26, 32, 33]. Their costs can vary, depending on the correctness
guarantees they can support and also depending onwhether sources
themselves or rather streaming operators are expected to emit them.
Watermarks are supported by many of the existing SPEs [1, 4, 10].

In the literature, someworks nonetheless state that both timestamp-
sorted input streams, as well as the existence of data sources that
are always able to result in reliable watermarks, are assumptions
that do not hold in many real-world cases. Because of this, they
instead:

(1) propose the leveraging of buffering mechanisms that delay
the processing of each input tuple to wait for possible later
arrivals and maximize the chances of feeding operators with
timestamp-sorted streams [7, 20, 21, 23, 25, 34], or instead

(2) try to estimate how long each window of a stateful operator
should be kept in memory in order to wait for possible late
arrivals that still contribute to it [10, 30, 31].

None of these approaches can usually guarantee that the pro-
vided results are correct and deterministic, although some can prove
the error they introduce is bounded according to how users tune the
parameters of the proposed techniques. Because of this, solutions
like [8] have also proposed to leverage correction tuples, which can
be created to improve the accuracy of previously produced results.

A last type of model found in the literature is that of order-
independent systems [23]. The motivation behind this model is that,
no matter how late a tuple is, its effect should always be reflected
on historical data since the latter could be later analyzed together
with new incoming data. The idea is then to maintain partial results
that can be consolidated in a continuous but lazy fashion, or simply
when such partial results are needed or requested.

8 CONCLUSIONS
This tutorial covers numerous models that have been discussed
in the data streaming literature to reason about event-time. The
sections included in this publication provide short summaries of the
topics the tutorial covers, with references and links to the relevant
literature. Attendees of the tutorial will learn the essential role of
event-time in distributed, parallel, fault-tolerant, and elastic data
streaming. We believe this knowledge can benefit both researchers
as well as practitioners. The topics presented in this tutorial can
also be beneficial in complementing existing research threads, and
better understanding some of the pros and cons of the mechanisms
provided by state-of-the-art Stream Processing Engines. All the
material used for this tutorial can be found at https://github.com/
vincenzo-gulisano/debs2020_tutorial_event_time.
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