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ABSTRACT
The topic of the 2020 DEBS Grand Challenge is to develop a solution
for Non Intrusive Load Monitoring (NILM). Sensors continuously
send voltage and current data into a stream processing application
that would detect the pattern of power data based on the data
characteristics. NILM is important in signal processing especially in
those advancing areas such as 5G and IoT products, which generate
massive amounts of data from the edge of the network. Our solution
focuses on how to divide and parallelize jobs as small as possible
while keeping some reasonable Service Level Agreement (SLA)
including job sizes and latency so that it would be practical for
edge or fog deployment. This paper describes our solution based on
Apache Flink, a stream processing framework, and the DBSCAN
density based clustering algorithm for anomaly detection through
the context of data provided by DEBS Grand Challenge.
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1 INTRODUCTION
Non-Intrusive Load Monitoring (NILM) [6] is a signal processing
application to collect and analyze load data in a non-intrusive man-
ner. The NILM method for voltage and current discussed in this
paper can be generalized to many applications, such as cloud or
network system load balancing. The same idea can be applied to
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measure variance in the utilization of data centers and their corre-
sponding inter and inner DC communication. For example, routes
need to handle transient loads depending on the time of the day or
district-speci�c hot-spots. NILM can help to design dynamic sched-
uling and deployment strategies to reduce cost and mitigate Service
Level Agreement (SLA) violations, for example: by accessing close
computation resources or scaling down resources.

This year’s DEBS challenge[11] aims at implementing a NILM
system to detect abrupt changes in electric power. Solutions are
ranked based on total run time, accuracy, latency, and timeliness. A
proper implementation needs to strike a balance between two trade-
o�s: (i) total run time and latency for Query-1, and (ii) timeliness
versus accuracy for Query-2.

The environment supplies electric current and voltage data in
batches, including out-of-order records, and the solution needs
to detect power-value-pair-change. In this paper, we examine the
idea of dividing jobs into simple short tasks, potentially deployed
on edge or volunteering nodes. With the ubiquity of 5G and IoT
devices, we expect underutilized computation capacity to increase
in the society[10]. For example, there will be a much higher density
of 5G base stations across the globe, which can be used temporarily
as edge computing resources for simple pre-processing jobs.

Our solution consists of three steps. First, we accumulate out-
of-order records. Second, we merge and order all the records for
the event detection process. Third, we use the DBSCAN cluster-
ing algorithm to detect power-value-pair-change events a speci�c
window size.

Our solution is based on Apache Flink. It is an event-driven
stream processing system on the top of JVM. We use Apache
Flink [8] to setup the computation as a directed acyclic graph (DAG).
On the graph, we can specify transformations to be applied to the
input stream in a speci�c order. Also, we leverage Flink’s operator
and task parallelism to divide the queries into smaller tasks that
can be executed concurrently. The incoming request stream is dis-
tributed to di�erent tasks of each operator, and until the data �ow
reaches the power-value-pair-change event detection operator, the
results are pushed to the grader. DBSCAN clustering algorithm is
performed to infer the detection results.

Our Query-1 solution assumes that there are not out of order
events. We apply our solution through the operators without any
out-of-orders policy. On the other hand, in Query-2, we assume that
there are out of order events and implemented a decision threshold
to keep or drop events.

2 BACKGROUND
The task is to process a signal stream, an unbounded sequence of
voltage and current records that are generated by a remote data
source. The input stream needs to be transformed to extract a set of
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features and then clustered to detect patterns that might indicate
changes in power.

With paper [6] and baseline solution provided to us, the proposed
an algorithm that uses forward and backward propagation steps
with some transformations to identify power-value-pair-change
events.

2.1 Event Model
The event detection pattern is motivated by a previous work dis-
cussing NILM with the clustering method [6] and the baseline
solution[1]. There are three models mentioned in that paper. The
�rst model matches a case when there are two distinct clusters
of power data in the data stream seen so far. The second model
considers one step forward that there can be noise in each of the
two data clusters while the temporal locality[6] of each cluster is
high; i.e., close to 1.0 which means there are not many noisy power
pairs in the time range of each cluster, so each of the clusters is
believed to be a stationary segments[6]. The third one is a further
generalization that there can be at least two high temporal locality
clusters with little noise. Our solution is based on this third model,
which we describe in detail below.

Assuming there are at least two high temporal locality clusters in
the data stream have seen so far, there can be more than one power-
value-pair-change events. In this case, we would need to go through
the data in the event time order and return the event detection
result for all two consecutive clusters, if they exist. We name those
steps event model checking procedure in this paper. There are three
constraints in this model that were checked for our power-value-
pair-change event detection. First, we want to make sure at least
two clusters are present. Second, we would need to make sure the
temporal locality of each cluster to be close to 1.0 so that fewer
noises are in the time range of each cluster. Third, to avoid clusters
with di�erent power values but at the same time domain, we would
like to make sure the clusters have a distinct state change interval
such that the latest data point of one cluster is earlier than all
data points of the other cluster. When all those three conditions
are satis�ed, we claim a power-value-pair-change event is detected.
Our implementation takes the baseline solution and furthermore
implement Flink’s multi-threading capability. In order to do so, we
translated the code to �t Flink’s multi-threading structure.

2.2 Apache Flink
We take advantage of the Flink stream processing framework so that
we do not need to worry about all the low-level implementations
and data �ow, and we can focus on the algorithm.

Flink’s programming model is a directed acyclic graph(DAG) [7]
and has two levels of abstraction. The upper-level abstraction is
called a job graph[4]. This is where a user can de�ne the DAG and
the functionality of each operator inside the graph. The lower level
abstraction is called the execution graph[4]. This is the actual data
�ow being executed by the system. Flink will convert a user’s job
graph to an execution graph based on the execution environment
set up by users. This is similar to converting a DB query plan to an
execution plan.

Flink’s event-driven nature helps us keep a balance between
latency and parallelism by operators. This framework provides the

necessary functionality required by our solution, including opera-
tor and task-level parallelism, watermarks, event-time timestamps
for handling out-of-order records, and key-based partitioning. We
discuss those tools and how we use them next.

2.2.1 Operator and Task Parallelism. Users can specify a paral-
lelism number for each operator in the job graph. Flink would then
create the corresponding number of tasks, each having its thread.
We take advantage of this feature to save time on implementing
low-level threading details.

2.2.2 Watermarks and Timestamps. Flink has built-in event time
management. It supports the notions of Watermarks and Times-
tamps. A Timestamp is a property attached to every element trans-
mitted in the data�ow. It indicates the time of the element in the
event time domain. Watermarks are unique records that provide
progress metrics of the data�ow to operators. Each operator has a
dedicated method to handle watermarks and decide whether it has
received all required input and whether it is safe to output results
to downstream. This is an important feature that we can use to
carry out event time-domain transformations.

2.2.3 JobManager and TaskManager. Apache Flink designed two
separate agents to handle di�erent functionalities. This is a master
and worker model. One is called JobManager, and the other one is
called TaskManager. JobManager is the master, and it would need to
deploy jobs and send health checks to TaskManagers. Each time a
job arrives, JobManager would convert the job’s DAGs to execution
graphs and schedule the job on each TaskManager to carry out the
computations. Also, it has all the fault-tolerant features, but those
are not expected to be used in this evaluation setting. TaskMan-
agers are workers. Each of them has some slots for each task. The
notion of a "slot" de�nes the number of threads that can operate
concurrently in one TaskManager. This is a distributed architecture
and theoretically it can save our time on handling machine com-
munications. While the evaluation platform does not support this
feature, we try to investigate the bene�t of it.

2.2.4 Data Partitioning. Flink’s built-in group by key mechanism,
the keyBy() method, is helpful to scale and migrate data. After
applying the group by key transformation, data would be hashed to
each task of the next downstream operator based on a key speci�ed
by the user. Moreover, each parallel instance can manage several
key groups at the same time. Each invocation of the method on the
task is bounded to a key group. This makes the merging step very
simple in terms of code but ine�cient in terms of the data �ow
design. This group by hashing and reorganize causes overhead to
the data �ow.

2.3 DBSCAN Clustering
DBSCAN[9] is a popular density-based unsupervised clustering
algorithm. Given a distance metric, the algorithm would try to
calculate the distance between data entries and would try to put
the data entries with close distance in a single cluster. A cluster is
a set holding those data entries. The de�nition of closeness is also
a parameter that can be con�gured. It is called n neighborhood. If
any 2 data entries are close enough or say in the "n neighborhood"
of each other, they would be put in a single cluster. However, to
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Figure 1: Query-1 DataFlow

remove noisy data, DBSCAN also constrains the number of data to
form a cluster. This is called "minPts," which de�nes the minimal
number of data entries that can form a cluster.

We are using the Apache Math3[2] implementation of the DB-
SCAN algorithm for abrupt power-value-pair-change event detec-
tion. We are matching the third model mentioned in section 2.1. We
begin with packing each corresponding active and reactive power
value as a point. Then, we cluster on the points with a pre-de�ned
euclidean distance and number of minimal neighbors parameters.
Next, we �nd some signi�cant di�erent clusters among those clus-
ters that indicate an abrupt change in power values by checking
the constrains mentioned in section 2.1. Then we output the power-
value-pair-change event detection result.

This implementation of the DBSCAN algorithm would compute
a new clustering decision from scratch every time we input the
power points. This is a place that we spent much time to study a
job dividing strategy to alleviate this bottleneck. We were trying in
2 directions. First, we tried to reuse previous clusters to save time
comparing clusters from scratch each time we get a new Power-
Point. Second, we were discussing, after the merge and ordering
phase, we could fetch a clustering job each time when we got a new
PowerPoint to save time with parallelism. The second approach
would create a lot of duplicate works. We discuss this further in
section 4.

2.4 Docker
The evaluation platform is based on Docker[12]. The graders pro-
vided a docker-compose template for us to pull our solution image
and their grader image as two services which is actually two contain-
ers. They can communicate with the common HTTP connections
over TCP.

Docker is a virtualization method that can create a virtualized
environment to run an isolated environment with libraries and
codes. It also utilize local resources like OS kernel and some other
low level libraries to handle IO and other operations that can be
shared among containers and supported by the local OS.

Docker Compose is a tool to deploy multiple containers at the
same time[5]. Users can specify how to run the services, which are
actually containers, including the docker image, ports to expose,
network, etc.

3 SOLUTION ARCHITECTURE
Overall, the 2 queries have many similarity in the transformations.
First, each record is partitioned with its id, which is the event time
timestamp generated by the grader. Afterwards with each id, there
is an accumulator for all the records related to this partition. The

accumulator has a hard-coded latency bound, and it would output
the records in a batch when its watermark is passing the bound.
Any record that came to the accumulator later than this bound
would be dropped. Then each batch is transformed and aggregated
from voltage and current values to be active and reactive power
values. Furthermore, there is a single ordering operator to order
each power value set by their timestamps. After that, we use a
DBSCAN implementation from Apache Math3 to cluster power
values to �nd an power-value-pair-change point.

3.1 Query-1 Data�ow Construction
Figure 1 shows the data�ow for our implementation of Query-1.
There are �ve operators in this DAG. one Source to get a batch of
input data. Next, there is one Map operator to pre-process voltage
and current to active and reactive power with high parallelism.
Following there is one Map operator that merges and orders power
data pairs. Then, a Process function applies clustering on the or-
dered pairs and �nally, a Sink operator posts the result back to the
grader.

Each of the operators has a parallelism parameter, which speci�es
the degree of parallelism of this operator. For the Source and Sink,
to avoid duplicate data, we set parallelism to be one. The Process
Function is also con�gured with parallelism one, since our DBSCAN
clustering implementation is sequential. A higher parallelismwould
only duplicate the clustering computation. The remaining available
threads can be used for the �rst Map operator, because it is simply
transforms each batch to a pair of a power data points. Then, we
have a lightweight merge and ordering operator to order power
pairs for clustering.

The DBSCAN operator receives pairs of power points, and trig-
gers a new event model checking procedure for each input. It then
checks the 3 constrains for a power-value-pair-change event. Each
of those computations is sequential, so a clustering can be trig-
gered only after the previous one is �nished. On each invocation
of the DBSCAN clustering, the operator would try to cluster all
data points it has seen for far. The data structure saving all the data,
which is called Window 2 in the problem statement[11], would be
cleaned up for memory management in an invocation satisfying
two requirements, i.e. there is one power-value-pair-change event
detected, and the size of this data structure exceeds a pre-de�ned
boundary. Finally, the clustering operator outputs an event detec-
tion result to the Sink operator downstream, no matter if an event
is detected or not. As the Sink operator receives a result from the
clustering operator, it sends each result with a POST request to the
grader at the corresponding HTTP address for Query-1. At the end

201



DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Zongshun Zhang and Ethan Timoteo Go

Source: GET data Process: Extract 
ID

Process: 
Accumulate 

Batches

Process: 
Transfrom to 

Power
Flat Map: Merge 

and Ordering
Process: 

Clustering
Sink: POST event 

detection resultKey By: record id

Figure 2: Query-2 DataFlow

of the process, the sink operator sends a GET request to the grader
system to trigger evaluation.

3.2 Query-2 Data�ow Construction
Figure 2 shows the data�ow for our Query-2 implementation. The
data�ow consists of seven operators with functionalities similar
to those of Query-1. A single-thread Source retrieves batches of
input data and sends them to a parallel Process function which
assigns the id of each record to be its key. This stage is executed
in parallel using the default number of parallelism i.e. all available
threads [3]. Later another Process function accumulates all records
with the same key, which is done by the keyBy(), the group-by key
mechanism in Flink mentioned above. This operator is used to wait
for out of order records, and we have a event time domain timer
to set how long to wait and then emit the batch. The group-by key
mechanism is used to sort records by their timestamps. Then the
steps are very similar to what we have in Query-1. We have one
more Process function to pre-process voltage and current to active
and reactive power from each batch, deployed with the default
parallelism, and then a Map operator merges and to ordered each
power pair set. A Process function then applies the event model
checking procedure and pushed the result to a Sink operator which
posts the result back to the grader.

3.3 Evaluation Trigger
To correctly trigger the evaluation, we need to apply a special han-
dling in the source data GET and result from POST methods. The
benchmark environment is a �ask HTTP server in Docker Con-
tainer. The solution can send a GET request to get each batch of
input data. To push each event detection result back to server, the
solution needs to send a POST request with the result data. Depend-
ing on the path those REST requests are sent to, i.e. "/data/1/" and
"/data/2/", the server would react with data for Query-1 and Query-
2, respectively. If the end of the batch is reached, the server will
send one additional empty string as an indication for the solution
to stop retrieving the batch of data. Moreover, when the graders
receive another GET request, the server will trigger its grading
procedure. This took us some time to debug, as if it is triggered
too early, which is possible in our case as we are utilizing operator
level parallelism, the grading system would �nd our result was not
complete. Our solution to that is to have our Source operator pass
that empty string downstream. Furthermore, in the Sink operator,
if that empty string is found, it can safely send a GET request to
server to trigger the evaluation. In our solution, we implement
the two functionalities in our source operator and sink operators.
Source and Sink are the beginning and destination in Flink data
�ow, and we can specify the transformations the two operators can

carry out. We have a loop in the source operator to keep reading
batches of input data until an empty string is received. Furthermore,
in the sink operator, whenever there is some result generated from
upstream, it would send the result to the corresponding path for a
di�erent query with a POST request.

4 EVALUATION AND DISCUSSION
Our solution was ranked sixth with total rank twenty-one in the
competition. In Query-1, our total run time is shorter than the
baseline solution, while the latency is longer. This makes sense as
in our multi-threading implementation, each operator’s throughput
is di�erent, and the Source operator does not need to wait to get
the next data set. While for Query-2, our timeliness rank was worse
than the baseline solution, the accuracy is better. This is expected
as we have an additional step to wait for out-of-order records to
help event detection.

When we submit the �nal version, we set the solution of Query-
2 to only take advantage of the operator parallelism, as the cost
of multi-threading for this benchmark-setting is far higher than
its bene�t. Optimizing latency is very challenging in our setting.
While we make more threads to partition the Job, the time for con-
text switches, data deliveries, and waiting for bottleneck operator
becomes signi�cant. We discuss the tradeo�s later in this section.

4.1 Latency and Timeliness
The baseline solution works with a single thread. Each time a batch
of records arrives, it saves it in its W2 window and triggers cluster-
ing for event detection. Moreover, if there are out-of-order records,
it ignores them and pads 2.0 to those missing values. This design
provides good latency and timeliness performance but bad total
run time, as no CPU cycles are wasted when waiting for bottleneck
operators. On the other side, when we try to partition jobs to small
components, this can help to improve utilization of the benchmark
system and achieve a shorter overall duration. But it would intro-
duce extra latency in terms of each record. We believe our solution
would work better in our hypothetical edge computation environ-
ment with some useful scheduling algorithms. However, this is not
directly aiming at the evaluation criteria of this competition, and
in some sense, we were o�-topic when we decided on the design.

4.2 Parallel DBSCAN
There is another parallel DBSCAN algorithm; for example, in [13],
they discussed a DBSCAN method with region growing and merg-
ing connected components. With task-level parallelism in Flink,
we can have a clustering job initiator to receive new power data
pairs. Moreover, when each new pair arrives it can initiate a new
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clustering task which is in an individual thread for power-value-
pair-change event detection on the data stream have seen so far.
Nevertheless, in the NILM setting, we always need a merge and or-
dering step to order power data pairs for clustering. The bottleneck
caused by this step is more than the bene�t given by parallelizing
the DBSCAN algorithm. However, in the hypothetical setting, as
the ordering step needs a node that has enough storage but little
computation power, it can be deployed in a regional DC. Then it
can distribute ordered points to local edge nodes to do DBSCAN
clustering in parallel and �nd another node to merge those paral-
lel clusters back for event detection. Then this can be the better
option of the DBSCAN algorithm because it can help to utilize
edge computing capacity and not only to use the capacity in a data
center.

We spent much time studying how to reuse clusters, which
prevented us from investigating more exciting ideas, such as par-
allelizing the DBSCAN algorithm. We thought about this parallel
method several weeks before the deadline of our submission, but
until the submission, whether the merge and ordering bottleneck
would destroy all the bene�ts of this parallel gain remains unclear.

Comparing these two methods, they both save time for waiting
for a event model checking procedure to �nish. One enables reuse
and avoids the re-calculation, and the other one would parallel
the computations. However, we do not know which one would be
better to implement in the real world.

4.3 Docker Compose
One constraint in the docker-compose template is that we can only
set up one service for our solution. However, the recommended
setup for Apache Flink is to have two services running separate func-
tionalities, one is JobManager, and the other one is TaskManager.
These constraints let us have a single JVM to run the functionalities
of both services, which can lead to performance degradation.

4.4 The Policy to Update W2
The policy of updatingW2 happened to be too constrained in Query-
1. It limits the ability to parallelize jobs. The only case to clean up
W2 is that no power-value-pair-change event is detected, and the
window size exceeds a pre-de�ned parameter. So each clustering job
would need to wait for the result of the previous clustering job. We
do not see the di�erence between this algorithm and clean up when
W2 reaches its pre-de�ned limit. Additionally, neither can detect the
particular case that right after cleanup, a power-value-pair-change
happens. This lets us match the baseline solution’s event detection
result rather than research how to get better performance.

5 CONCLUSION
Evaluating the performance of our query, we are elated to have
experience developing a solution for this project. We studied the
idea of utilizing edge computing nodes for the NILM system and
the tradeo� of this idea. While we were unable to optimize our
code fully with our strategy, we believe that the idea is viable to the
problem given by the DEBS challenge, especially in a more general
WAN environment. Apache Flink is just one of many tools that
can be used to create solutions to the challenge. Our hope for the

future is to combine many di�erent tools and ideas in developing
an e�cient stream processing application.
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