
Grand Challenge: Real-time Detection of Smart Meter Events
with Odysseus

Michael Brand
michael.brand@uol.de
University of Oldenburg
Oldenburg, Germany

Tobias Brandt
tobias.brandt@offis.de

OFFIS—Institute for Information
Technology

Oldenburg, Germany

Marco Grawunder
marco.grawunder@uol.de
University of Oldenburg
Oldenburg, Germany

ABSTRACT
The energy grid is changing rapidly to include volatile, renewable
energy sources to help achieve climate goals. The transition to a
smart grid, including smart meters for the metering and communi-
cation of the energy consumption, helps with that transition. The
smart meters provide a stream of measurements, which can be used
for additional services, such as visualization of power consump-
tion. Detecting switching events, when devices in a household are
switched on or off, is one possible application on smart meter data.

The goal of the ACMDEBSGrand Challenge 2020 is to implement
a live switch detection on a data stream from a smart meter for
Non-Intrusive Load Monitoring. This paper presents a solution for
the challenge with a general purpose and open source data stream
management system that focuses on reusable, generic operators
instead of a custom black-box implementation.

CCS CONCEPTS
• Information systems→Data streams; Streammanagement;
Data stream mining; • Hardware→ Smart grid.

KEYWORDS
Data Stream Management Systems, Data streaming, Stream man-
agement, Smart grid, Smart meter, Non-Intrusive Load Monitoring
ACM Reference Format:
Michael Brand, Tobias Brandt, and Marco Grawunder. 2020. Grand Chal-
lenge: Real-time Detection of Smart Meter Events with Odysseus. In The
14th ACM International Conference on Distributed and Event-based Systems
(DEBS ’20), July 13–17, 2020, Virtual Event, QC, Canada. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3401025.3401757

1 INTRODUCTION
Smart meters are connected electricity meters. As part of the tran-
sition to a smart grid, smart meters allow to measure and analyze
the power consumption with a high granularity and are, there-
fore, enablers for additional services, for example for customers to
understand their power consumption.

Non-Intrusive Load Monitoring (NILM) is a technique to analyze
the raw power consumption data to gainmore detailed insights, e. g.,
when and which devices are switched on or off [2]. The ACM DEBS

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401757

Grand Challenge 2020 (GC 2020) [3] provides a challenge to apply
a given NILM algorithm on a stream of voltage and current that
resembles the consumption of an office building. The algorithm
aims to detect switching points, i. e., sudden changes in power
consumption. It has to be applied on two data streams: one in which
all data elements arrive in their original order and one in which
neither the order nor the completeness of the data is guaranteed [3].
These two different input streams are referred to as Query 1 and
Query 2. The goals for Query 1 are a low latency and a low total
runtime while Query 2 aims at having both a high timeliness and
a high accuracy. Reading fewer input elements before creating
an output results in a high timeliness. Accuracy is defined by the
difference in the event time stamps to the ones of the baseline
solution, i. e., without missing or out-of-order elements.

The main idea of our solution is to not use black-box implementa-
tions of the algorithm, but to solve the problem with a general pur-
pose data stream management system (DSMS) and its application-
independent operators and data stream query language. We de-
signed the queries based on existing functionality in the open source
DSMS framework Odysseus1 [1]. Odysseus is a flexible framework
to create custom DSMSs based on generic feature sets such as re-
lational algebra, key value processing, user management, query
management and optimization, query languages, and access inter-
faces for different data sources such as http, files, MQTT, etc.

The main contributions described in this paper are the following:
• A solution for the GC 2020 with generic, application-inde-
pendent, and most of them basic operators.

• Query plans that can easily be adapted or used for similar
problems by changing parameters.

The paper continues in Section 2 with the description of the
event detection. Next, in Section 3, different possibilities to handle
missing and out-of-order elements are described and discussed.
Section 4 presents the evaluation results and Section 5 concludes
the paper.

2 EVENT DETECTION
The challenge to solve is to detect events, the turning on or off of
a device, in a data stream of a smart meter. The input data stream
consists of energy measurement tuples, each providing the voltage
𝑣 and the current 𝑐 for a point in time. For the event detection, a spe-
cific algorithm is mandated. The algorithm is a two-stage clustering
algorithm based on DBScan with a forward and a backward pass [2].
Its input features are active and reactive power data that need to
be calculated from the smart meter input data. The algorithm uses

1https://odysseus.uni-oldenburg.de/

193

https://doi.org/10.1145/3401025.3401757
https://doi.org/10.1145/3401025.3401757

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Brand et al.

SM Data
P and Q Calc
(Subqry) Enrich

Forward Pass
(Subqry)

Backward
Pass (Subqry)

Event Handling
(Subqry)

WinID Mgmt
(Subqry) Merge SenderInit WinID

No Event Hdlg
(Subqry)

1

1

1

1

2

1

Figure 1: Query plan of the event detection on an abstract level (Query 1). Subquery operators contain other query plans.

a tuple-based window, which size increases with every new input
feature pair. It is cleared if an event is detected or if its size exceeds
100 elements. In the forward pass, the DBScan algorithm is applied
to the window and it is checked whether an event occurs in the
window or not. The latter depends on how events are modeled.
Barsim and Yang [2] propose three different event models M1, M2,
and M3. The event models differ in the constraints for having an
event in the current window [3]. M3 is used in this paper because
it is the most general one.

If an event is detected in the forward pass, the window is for-
warded to the backward pass to improve the localisation of the
event. For this, the oldest feature pairs are iteratively removed from
the window before DBScan and the model check is applied again.
This is done until the event is not detected any more. Then, the
solution from the previous iteration, i. e., the last iteration that
found the event, is chosen. This backward pass leads to more stable
selections.

The query plan of our solution is visualized in Figure 1 and
contains several logical parts implemented as subqueries. Subquery
operators are special operators in Odysseus that hide nested query
plans. The “feature calculation”, for example, hides a query plan
that calculates the active and reactive power based on the smart
meter input data. Subqueries are normal queries. Hence, they are
installed and started together with the main query. The benefits
of subqueries are, on the one hand, a higher clarity due to several
layers of abstraction and, on the other hand, a better exchangeability.
The latter is achieved because different queries can be defined for
the same (partial) problem and be easily exchanged by just calling
a different subquery. We demonstrate this feature in Section 3 by
proposing different subqueries for the out-of-order handling.

Another general feature of the query plan to be mentioned is
the possibility to design recursive plans. This is a new feature of
Odysseus that we developed to solve the GC 2020. It is also a good
example of how we use challenges like the GC 2020 to improve
Odysseus by adding application-independent, useful mechanisms
and operators.

In the following, the query plan will be explained. In the “feature
calculation”, the single energymeasurements are aggregated using a
tuple-based window with a size and an advance of 1000 to calculate
the active and reactive power (𝑃 and 𝑄) for periods in time. The
active power is defined as

𝑃 =
1

𝑠𝑖𝑧𝑒 (𝑊 1) ·
∑

(𝑣𝑖 · 𝑐𝑖)

for all 𝑣𝑖 and 𝑐𝑖 in the same window. To calculate the reactive power,
the apparent power 𝑆 must be calculated first:

𝑆 = 𝑣𝑅𝑀𝑆 · 𝑐𝑅𝑀𝑆

with 𝑣𝑅𝑀𝑆 and 𝑐𝑅𝑀𝑆 being the root-mean-squares (RMSs) of all 𝑣𝑖
and 𝑐𝑖 in the same window. The reactive power is then defined as

𝑄 =
√
𝑆2 − 𝑃2 .

The “window ID management” manages the current window ID
for the dynamic window of the forward pass. The window ID is
an increasing sequence number, with which every input tuple is
enriched afterward. The window ID is needed to determine whether
the current windowmust be extended or cleared. The source named
“initial window ID” provides the initial sequence number and, after
each clearing of the window, the window ID increases.

The “forward pass” subquery uses the DBScan algorithm in a
map operator to perform the clustering. A model check afterward
determines whether an event occurs in the current window or not,
based on M3 from Barsim and Yang [2], which is slightly adapted
in the GC 2020. Figure 2 shows the query plan of the model check
subquery.

The first constraint of M3 is that the clustering result must con-
tain at least two non-outlier clusters [2]. In addition, for the GC 2020,
we defined in our solution that the outlier cluster must be not empty.
The second constraint is that there must be at least two non-outlier
clusters with a high temporal locality. The temporal locality of a
cluster 𝐶𝑖 is defined in [2] as

𝐿𝑜𝑐 (𝐶𝑖) =
|𝐶𝑖 |

𝐿𝑒𝑛(𝐶𝑖)
.

194

Grand Challenge: Real-time Detection of Smart Meter Events with Odysseus DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Calculate cluster
structures

Filter Temporal
Locality

Calculate cluster
combination
structures

Add noise to cluster
combination
structures

Merge

Project

Constraint 1

f(x) f(x) f(x)f(x)
Find cluster
combinations
without overlaps

f(x)
Extract cluster
combination
without overlaps

f(x)f(x)
found

Project Project

notFound

Model_Check_In Constraint 2 Constraint 3

1 1 1

1

Put u and v in
payload

2

Figure 2: The subquery to locate events in a window based on the DBScan output.

It is the proportion of the amount of feature pairs in the cluster and
the temporal length of the cluster. The latter is the difference in the
time stamps of the feature pair with the highest time stamp and
the one with the lowest.

In the query plan in Figure 2, cluster structures are calculated
before the second constraint is checked. A cluster structure is a
list of the size of the cluster, the lowest as well as the highest time
stamp in the cluster. All other information such as the concrete
feature pairs in the cluster are discarded because they are not needed
anymore after the clustering. Of course, the feature pairs are needed
again for the clustering in the backward pass. For that, the content
of the current window is stored in a separate attribute, which is not
touched in the model check.

The third constraint is that there must be at least two non-outlier
clusters that do not overlap in the time domain [2]:

∃𝑢, 𝑣 > 𝑢 : 𝑥𝑥𝑥𝑢 ∉ 𝐶1∀𝑛 > 𝑢 ∧ 𝑥𝑥𝑥𝑢 ∈ 𝐶1 ∧ 𝑥𝑥𝑥𝑣 ∉ 𝐶2∀𝑛 < 𝑣 ∧ 𝑥𝑥𝑥𝑣 ∈ 𝐶2 .

𝑥𝑥𝑥𝑛 , 𝑥𝑥𝑥𝑢 , and 𝑥𝑥𝑥𝑣 are feature pairs with the time stamp 𝑖 , 𝑢, and 𝑣 ,
respectively.𝐶1 is the left cluster (before the event) and𝐶2 the right
(after the event). In addition, for the GC 2020, we defined in our
solution that at least one outlier feature (cluster 𝐶0) must be in the
so-called change interval between 𝐶1 and 𝐶2:

∃𝑥𝑥𝑥𝑛 ∈ 𝐶0 : 𝑢 < 𝑛 < 𝑣 .

We use different map operations to preprocess the third con-
straint. Listing 1 shows the preprocessing in the query language
PQL2. In a first map operation, all possible cluster combination
structures are calculated and stored in a list attribute. A cluster com-
bination structure consists of a left cluster structure, a right cluster
structure, the end of the left cluster (highest time stamp, named 𝑢),
and the start of the right cluster (lowest time stamp, named 𝑣). The
#DEFINE commands are string replacements to improve readability.
In a second map operation, we add the time stamps of all outliers
that lie between 𝑢 and 𝑣 to each cluster combination structure. The
cluster combination structures are filtered by the constraint that 𝑢
must be before 𝑣 and the list of outliers between 𝑢 and 𝑣 must be
not empty. This is done in a third map operation. The validation of
the third constraint is then to check whether at least one cluster
combination structure is left in the list.

2https://wiki.odysseus.informatik.uni-oldenburg.de/x/NQFG

If an event is found, the start and the end of the change interval,
i. e. the lowest and highest time stamps of the outliers, are stored
in an attribute called payload. This is useful for the backward pass
because the payload attribute is only changed when an event is
detected. If there is no event detected in an iteration of the backward
pass, the best fitting change interval from the last iteration is still
in the payload. The windows in which no event is detected (output
port 1 of the filters in Figure 2), are forwarded to another output of
the subquery.

The found events are forwarded to the backward pass (cf. Fig-
ure 1). The differences between the forward and the backward pass
are the following:

• The backward pass does not have a window operator.
• The window forwarded from the forward pass is sorted ac-
cording to the timestamps.

• The backward pass contains a recursive plan after the sorting.
The recursion finishes when an event is not detected any
more.

• Before the clustering in the backward pass, the feature pair
with the oldest time stamp is removed from the window.

The backward pass has, in difference to the forward pass, only
one output channel. The found events are forwarded to the “event
handling” subquery via this output channel. The “event handling”
subquery has two purposes. First, the found events are formatted
according to the desired format of the results. Second, the point in
time of the end of the found change interval is forwarded to the
“window IDmanagement” to increase the window ID and to remove
all elements till the forwarded point in time from the window.

Analogous, windows in which no event is detected in the for-
ward pass are managed in the “no event handling” subquery. The
“no event detection” subquery has two purposes, too. First, the infor-
mation that there is no event in the window is formatted according
to the desired format of the results. Second, if the window contains
more than 100 feature pairs, a trigger is sent to the “window ID
management” to increase the window ID and to remove all elements
from the window.

3 OUT-OF-ORDER HANDLING
The second part of the challenge is to handle smart meter data
for the event detection that can be, regarding their time stamps,
out-of-order or even missing [3]. Figure 3 shows the query plan for

195

https://wiki.odysseus.informatik.uni-oldenburg.de/x/NQFG

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Brand et al.

Listing 1: Preprocessing for the third model constraint.
1 /// first build cluster combinations: [left cluster , right cluster , u, v]

2 #DEFINE c_left eif(elementAt(asList(c1) ,1) < elementAt(asList(c2) ,1),c1,c2) /// cl. with lower min

3 #DEFINE c_right eif(elementAt(asList(c1) ,1) < elementAt(asList(c2) ,1),c2,c1) /// other cluster

4 #DEFINE u elementAt(asList(${c_left }), 2) /// u is max of left cluster

5 #DEFINE v elementAt(asList(${c_right }), 1) /// v is min of right cluster

6 combinations = MAP({

7 expressions = [

8 ['forEachPair(cluster_structures ," toList(${c_left},${c_right},${u},${v})")', '

↩→ cluster_combination_structures ', 'List_List '],

9 'noise_cluster ', 'payload ', 'window '

10]

11 },

12 0: constraint_2

13)

14 #DEFINE u elementAt(asList(cluster_combination_structure), 2)

15 #DEFINE v elementAt(asList(cluster_combination_structure), 3)

16 #DEFINE noise filter(asList(noise_cluster),toTuple(cluster_combination_structure),\'a_noise >${u}&&

↩→ a_noise <${v}\') /// noise between u and v

17 add_noise = MAP({

18 expressions = [

19 ['forEach(cluster_combination_structures ,toTuple(noise_cluster),"addTo(${noise},

↩→ cluster_combination_structure)")', 'cluster_combination_structures ', '

↩→ List_List '],

20 'payload ', 'window '

21]

22 },

23 combinations

24)

25 #DEFINE noise asList(elementAt(asList(cluster_combination_structure), 4))

26 without_overlaps = MAP({

27 expressions = [

28 ['filter(cluster_combination_structures ,"${u}<${v}&&! isEmpty(${noise})")', '

↩→ cluster_combination_structures ', 'List_List '],

29 'payload ', 'window '

30]

31 },

32 add_noise

33)

Query 2. The query is almost the same as the first (cf. Figure 1) but
contains an “out-of-order management” subquery previous to the
calculation of the features.

Missing elements are handled by not using an element window
for𝑊 1 but to use a predicate window3. An element window would
collect, in case of the GC 2020, exactly 1000 elements. Hence, miss-
ing elements would shift the placement of elements to the windows.
With the predicate window operator, a window is complete if the
attribute 𝑖 of the current element (the time stamp) is a multiple of
1000: 𝑖%1000 == 0. The use of this condition results in the same
window arrangement as without missing elements.

In the remainder of this section, we provide two different meth-
ods to manage out-of-order elements. The first method is to discard
elements that belong, with respect to its 𝑖 , to a window that is

3https://wiki.odysseus.informatik.uni-oldenburg.de/x/JICO

already processed. We call this method simple out of order (Sim-
ple OoO). The idea, besides the discarding, is that elements only
need to be discarded if they would be allocated to the wrong win-
dow𝑊 1 for the calculation of the features. Within a window, the
order of the elements is irrelevant (cf. calculation of 𝑃 and 𝑄 in
Section 2). The time stamps (𝑖) of the input data for the GC 2020
start with 0 and the size of𝑊 1 is 1000. Then, the condition for
discarding an element is⌊ 𝑙𝑎𝑠𝑡_𝑖

𝑠𝑖𝑧𝑒 (𝑊1)

⌋
>

⌊ 𝑖

𝑠𝑖𝑧𝑒 (𝑊1)

⌋
with 𝑙𝑎𝑠𝑡_𝑖 being 𝑖 of the last element before the current one.

The second method is to use a reorder operator4 in combina-
tion with heartbeats. A heartbeat operator sends heartbeats to the

4https://wiki.odysseus.informatik.uni-oldenburg.de/x/24Fs

196

https://wiki.odysseus.informatik.uni-oldenburg.de/x/JICO
https://wiki.odysseus.informatik.uni-oldenburg.de/x/24Fs

Grand Challenge: Real-time Detection of Smart Meter Events with Odysseus DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

SM Data
P and Q Calc
(Subqry) Enrich

Forward Pass
(Subqry)

Backward
Pass (Subqry)

Event Handling
(Subqry)

WinID Mgmt
(Subqry) Merge SenderInit WinID No Event Hdlg

(Subqry)

1

OoO Hdlg
(Subqry)

1

1

2

1 1

Figure 3: Query plan of the event detection and handling of out-of-order elements on an abstract level (Query 2). Subquery
operators contain other query plans.

reorder operator for incoming elements. The calculation for the
timestamp of the heartbeat can be defined by the user. The reorder
operator collects all incoming elements and sorts them. When it
receives a heartbeat, it sends all elements for which time stamp is
before the time stamp of the heartbeat in the correct order out to
the next operator. The parameter to adjust for the use case of the
GC 2020 is the calculation for the timestamp of the heartbeat:

⌊𝑖 − 𝑟 · 𝑠𝑖𝑧𝑒 (𝑊1)⌋ − 1

with a reorder factor 𝑟 . In other words, 𝑟 is the amount of window
batches in the past, which elements still need to be kept by the re-
order operator, when it receives the heartbeat. If 𝑟 = 0 is chosen, all
elements of older window batches are sent by the reorder operator
for further reordering. We evaluated this method with different
values for 𝑟 to find good tradeoffs between a high waiting time (low
timeliness) and a high accuracy of the results.

We implemented the methods in different “out-of-order manage-
ment” subqueries. The results are discussed in Section 4.

4 EVALUATION
The GC 2020 provides two sets of data to test and evaluate the
solutions. The larger data set contains 15 000 000 tuples. The fol-
lowing evaluations have been conducted on this data set with a
benchmarking software provided by the GC 2020. Additionally, the
challenge includes a public evaluation platform to benchmark the
submitted solutions against each other. The benchmarking software
measures four aspects of the respective solution, two for each query.
The two aspects for Query 1 are:

• Total Runtime: The total amount of time that the query
needs to process on the provided benchmarking system.
Lower is better.

• Latency:The average amount of time that the solution needs
to create a result for a new input. Lower is better.

The measured values for Query 2 are:
• Timeliness: The basis for the timelineness is the time stamp
of the last read input element when an output is created. The
timelineness compares the value of the provided solution

(𝑡 ′
𝑖𝑛
) with the value of the reference solution (𝑡𝑖𝑛) for each

output:
∑
max(0, 1 − 𝑡 ′𝑖𝑛−𝑡𝑖𝑛

10). Higher is better.
• Accuracy: The basis for the accuracy is the time stamp
of found events. The accuracy compares the value of the
provided solution (𝑡 ′𝑜𝑢𝑡 .𝑒𝑣𝑒𝑛𝑡𝑠) with the value of the ref-
erence solution (𝑡𝑜𝑢𝑡 .𝑒𝑣𝑒𝑛𝑡𝑠) for each event:

∑
max(0, 1 −

|𝑡 ′𝑜𝑢𝑡 .𝑒𝑣𝑒𝑛𝑡𝑠−𝑡𝑜𝑢𝑡 .𝑒𝑣𝑒𝑛𝑡𝑠 |
10). Higher is better.

These measured values are used to rank the solutions on the
benchmarking system. Additionally, we conducted benchmarks on
our own machines with the same benchmarking software and the
provided data set to measure the statistical spread in a controlled
environment. The benchmarks were conducted on an Ubuntu 19.10
system with Java 11, 16GiB of RAM from which Odysseus was
able to use 8GiB. The machine runs on an Intel i5-6200U CPU with
2.30GHz.

For Query 1 we have exactly one solution for which wemeasured
the latency and the total runtime. The results can be seen in Figure 4.
As can be seen, the latency is about 21ms. The benchmarking
software sends the data in batches with 1 000 tuples at a time,
wherefore the latency is the time from receiving such a batch until
producing the output for the batch.

As can be seen in Figure 4b, the whole query needs about 10.5
minutes to finish. As the original data rate is not known, we cannot
say whether this is slower or faster than real time.

Query 2 benchmarks the out-of-order solutions with an input
data stream with missing and out-of-order values. We measured
the accuracy and timeliness for both the Simple OoO and the Re-
order algorithms. For the Reorder algorithm, we evaluated different
settings for the reorder factor parameter (𝑟). The results can be seen
in Figure 5 and Figure 6.

Figure 5 shows the Reorder algorithm with two extreme settings
for the reorder factor and the Simple OoO algorithm. A reorder
factor of -1 means that no reorder takes place and the operator does
not wait at all while a reorder factor of 20 means that the algorithm
waits for the 𝑛 + 20th batch of elements before processing the 𝑛𝑡ℎ
batch of elements.

197

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Brand et al.

20.6

20.7

20.8

20.9

21.0

21.1

21.2

21.3

L
at

en
cy

in
m

s

(a) Latency of Query 1

620

622

624

626

628

630

T
ot

al
R

un
ti

m
e

in
se

co
nd

s

(b) Total runtime of Query 1

Figure 4: The latency (4a) and total runtime (4b) results as
boxplots of 14 runs for Query 1.

R
eo

rd
er

r=
-1

R
eo

rd
er

r=
20

S
im

p
le

O
oO

method

0

2500

5000

7500

10000

12500

ti
m

el
in

es
s

(a) Timeliness of Query 2

R
eo

rd
er

r=
-1

R
eo

rd
er

r=
20

S
im

p
le

O
oO

method

0

10

20

30

40

ac
cu

ra
cy

(b) Accuracy of Query 2

Figure 5: The timeliness (5a) and accuracy (5b) results of the
different solutions for Query 2 compared.

For the timeliness value, the Reorder r=-1 surpasses the Simple
OoO slightly with a value of 13 499 versus 13 497. The Reorder r=20
has a timeliness of zero because it waits too long before producing
the results. While this behavior leads to the worst timeliness, it is
the solution with the highest accuracy with a value of 47.5. Reorder
and Simple OoO follow with values of 42.4 and 36.8.

The benchmarks show that there is a tradeoff between the timeli-
ness and the accuracy. Nevertheless, when only comparing Reorder
r=-1 and Simple OoO, Reorder r=-1 performs better in both categories
while the Reorder r=20 solution is only an option in cases where
the timeliness is not important.

To evaluate the impact of the reorder factor, we measured the
accuracy and timeliness with an increasing 𝑟 . The results are shown

0 5 10 15 20 25 30

Reorderfactor

43

44

45

46

47

ac
cu

ra
cy

0

2500

5000

7500

10000

12500

ti
m

el
in

es
s

Accuracy

Timeliness

Figure 6: Impact of the reorder factor on the benchmark re-
sults of Query 2.

in Figure 6. The accuracy increases with an increasing value for 𝑟
while the timeliness drops down to zero with a reorder factor of 8.

The advantage of a parameterized solution like the Reorder algo-
rithm is that the parameters can be chosen based on the use case.
Doing so, it is possible to find a sweet spot between accuracy and
timeliness.

5 CONCLUSION
The GC 2020 [3] sets up a stream processing challenge with a real-
world scenario in the field of smart meter data. Switch events that
occur when a device is switched on or off have to be detected in a
raw electricity consumption data stream with a specified algorithm.

Our presented solutions focus on using a general purpose DSMS,
namely Odysseus, with operators that are not especially made
for this specific challenge but that implement generic data stream
processing functionality. This makes our solution simpler to un-
derstand and adapt due to a data stream query language and tool
support, that, for example, shows the live stream results as well as
the query graph.

We used these operators to implement the specified algorithm
in two different ways. While the main query does not need to
handle out-of-order elements, we adapted this query to handle
those for Query 2. Due to the use of a data stream query language,
the adaption of the query has been a minor change. Hence, the
GC 2020 showed that data stream problems can be solved with
general purpose systems without the need for problem-specific
low-level implementations.

REFERENCES
[1] H.-Jürgen Appelrath, Dennis Geesen, Marco Grawunder, Timo Michelsen, and

Daniela Nicklas. 2012. Odysseus - A Highly Customizable Framework for Creating
Efficient Event Stream Management Systems. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-based Systems. Association for Computing
Machinery, Berlin, Germany, 367–368. https://doi.org/10.1145/2335484.2335525

[2] Karim Said Barsim and Bin Yang. 2016. Sequential clustering-based event detection
for non-intrusive load monitoring. Computer Science & Information Technology 6
(2016), 77–85.

[3] Vincenzo Gulisano, Daniel Jorde, Ruben Mayer, Hannaneh Najdataei, and Dimitris
Palyvos-Giannas. 2020. The DEBS 2020 Grand Challenge. In Proceedings of the
14th ACM International Conference on Distributed and Event-Based Systems (DEBS
’20). Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3401025.3402684

198

https://doi.org/10.1145/2335484.2335525
https://doi.org/10.1145/3401025.3402684
https://doi.org/10.1145/3401025.3402684

	Abstract
	1 Introduction
	2 Event Detection
	3 Out-of-Order Handling
	4 Evaluation
	5 Conclusion
	References

