
The DEBS 2020 Grand Challenge
Vincenzo Gulisano

Chalmers University of Technology
Sweden

vincenzo.gulisano@chalmers.se

Daniel Jorde
Technical University of Munich

Germany
daniel.jorde@tum.de

Ruben Mayer
Technical University of Munich

Germany
ruben.mayer@tum.de

Hannaneh Najdataei
Chalmers University of Technology

Sweden
hannajd@chalmers.se

Dimitris Palyvos-Giannas
Chalmers University of Technology

Sweden
palyvos@chalmers.se

ABSTRACT
The ACM DEBS 2020 Grand Challenge is the tenth in a series of
challenges which seek to provide a common ground and evaluation
criteria for a competition aimed at both research and industrial
event-based systems. The focus of the ACM DEBS 2020 Grand Chal-
lenge is on Non-Intrusive Load Monitoring (NILM). The goal of the
challenge is to detect when appliances contributing to an aggre-
gated stream of voltage and current readings from a smart meter
are switched on or off. NILM is leveraged in many contexts, ranging
from monitoring of energy consumption to home automation. This
paper describes the specifics of the data streams provided in the
challenge, as well as the benchmarking platform that supports the
testing of the solutions submitted by the participants.

CCS CONCEPTS
• General and reference → Performance; • Information sys-
tems → Data streams;

KEYWORDS
Event processing, Data Streaming, NILM

ACM Reference Format:
VincenzoGulisano, Daniel Jorde, RubenMayer, HannanehNajdataei, andDim-
itris Palyvos-Giannas. 2020. The DEBS 2020 Grand Challenge. In The 14th
ACM International Conference on Distributed and Event-based Systems (DEBS
’20), July 13–17, 2020, Virtual Event, QC, Canada. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3401025.3402684

1 INTRODUCTION
The ACM DEBS 2020 Grand Challenge is the tenth in a series [2, 5–
10, 12] of challenges that seek to provide a common ground and
evaluation criteria for a competition aimed at both research and
industrial event-based systems.

The ACM DEBS 2020 Grand Challenge focuses on Non-Intrusive
Load Monitoring (NILM). The goal of the challenge is to detect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8028-7/20/07.
https://doi.org/10.1145/3401025.3402684

when appliances contributing to an aggregated stream of voltage
and current readings from a smart meter are switched on or off.
NILM is leveraged in many contexts, ranging from monitoring of
energy consumption to home automation. The ACM DEBS 2020
Grand Challenge evaluation platform is provided by the Distributed
Computing and Systems (DCS) Research Group (Chalmers). Such
platform is based on the evaluation platform previously provided
by the Systems Engineering Group (TU Dresden).

This paper presents the data that was used in the challenge in
Section 2 and the tasks that participants had to solve in Section 3.
Section 3.3 introduces the evaluation criteria for the ACM DEBS
2020 Grand Challenge and Section 4 describes the platform and the
benchmark implementation used for the evaluation.

2 DATA
The data provided for the challenge is a subset of the published
BLOND dataset [11] which consists of high sampling rate energy
measurements from a custom-built smart meter in an office build-
ing. The data represents the aggregate consumption from multi-
ple offices and is enriched with the per-appliance consumption
ground-truth to enable energy disaggregation. Each input tuple
⟨𝑖, 𝑣, 𝑐⟩ represents an energy measurement, where attributes 𝑖 , 𝑣
and 𝑐 represent the tuple sequence id, the voltage and the current,
respectively.

In order to use these input tuples to perform NILM event detec-
tion, this data needs to be preprocessed in the participants’ solution.
Each input tuple is first aggregated using a tuple-based tumbling
window𝑊1 of size 1000 to compute the active and reactive power
features. The data is sampled 50000 times per second, hence, every
period in the signal contains 1000 samples, based on the 50 Hz base
frequency in Germany. The input features are computed per period
as follows:
Active Power 𝑃 =

∑(𝑣×𝑐)
1000 .

Apparent Power 𝑆 = voltageRMS×currentRMS with root-mean-square
(RMS) values of voltage and current per period respectively.
Reactive Power 𝑄 =

√
𝑆2 − 𝑃2.

3 THE GRAND CHALLENGE PROBLEM
DEFINITION

This section introduces the task that participants of the ACM DEBS
2020 Grand Challenge had to solve. The goal is to detect when
appliances contributing to an aggregated stream of voltage and
current readings are switched on or off. The challenge solution

183

https://doi.org/10.1145/3401025.3402684
https://doi.org/10.1145/3401025.3402684


DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada V. Gulisano et al.

should produce a result every 1000 input tuples (i.e., each time
window𝑊1 is full). Such result specifies whether an event has been
detected for such window and the sequence number of the window
𝑊1 for which the event is detected.

The schema of the output stream is thus: ⟨𝑠, 𝑑, event𝑠 ⟩, where
𝑠 is the window𝑊1 input tuple sequence id to which this output
tuple refers to, 𝑑 is a boolean attribute that specifies whether an
event is detected or not and event𝑠 is the window𝑊1 sequence id
of the detected event (if any).

In particular, in this year’s challenge, we have introduced two
different queries to be solved: Query 1 is the described event detec-
tion on a regular stream of input tuples, whereas in Query 2, the
input stream could arrive out-of-order or even be incomplete. In
the following, we describe both queries in detail.

3.1 Query 1
As described in Section 2, detecting the events involves computing
active and reactive powers from the input tuples in window𝑊1.
This results in a stream of features, more precisely, of active and
reactive powers in the corresponding𝑊1 window instances.

The resulting stream of features is then processed based on the
algorithm described by Barsim and Yang [1]. More concretely, a
tuple-based window𝑊2 of varying size is maintained and each new
pair of features (active and reactive power) are added to window
𝑊2. The DBSCAN algorithm [3] is applied to the window, using a
forward and a backward pass.

In the forward pass, first the event model constraints are checked.
Then, the clustering loss is computed. If the model constraints are
valid and the loss is below a given threshold, an event is detected.
In this case, the backward pass is started. Else, the next tuple is
added to window𝑊1 and the algorithm continues from the start.

In the backward pass (i.e., when an event is detected in the
forward pass), the oldest data tuple is removed from𝑊2 in each
iteration and the DBSCAN clustering algorithm is applied. This
is repeated as long as the event that was detected previously in
the forward pass is still detected. If it is not detected anymore,
the backward pass is stopped and the resulting event is returned.
By doing so, one gets more stable steady-state sections from the
algorithm. If an event is not detected and window𝑊2 contains more
than 100 elements, then𝑊2 is emptied.

3.2 Query 2
The second query is a variation of Query 1. More concretely, this
query is expected to process an input stream that can contain both
late (out-of-order) arrivals as well as missing tuples. Since the se-
mantics of Query 2 are equal to those of Query 1, participants are
expected to provide a solution that is able to trade-off timeliness
and accuracy of results. Upon reception of an input tuple, the so-
lution can produce an output (based only on the data observed so
far) or decide to postpone the output and wait until late-arriving
input tuples are received. In this second case, the solution can wait
for possible late arrivals to provide an output that more accurately
identifies the timestamp at which an event is detected (if any).
In order to differentiate between missing tuples and late arrivals,
we bounded the maximum delay of late tuples to 20𝑊1 windows
(20,000 time units). Each output tuple must be produced only once.

3.3 Evaluation
The overall final rank is calculated as the sum of all rankings for
both queries. The solution with the lowest overall final rank wins
the performance award. The paper review score is used in case of
ties.

Query 1. Evaluation of Query 1 addresses two aspects: (1) cor-
rectness of results and (2) processing speed. The first is taken into
account by comparing the results of a proposed solution with that
of our baseline. Only solutions that produce correct results (i.e.,
that produce the same set of output tuples produced by our baseline
and in the same order) are considered as valid. The second aspect
is captured with multiple measures, the total run-time (rank0) and
the latency (rank1). The specifics of the ranking for the processing
speed and quality of results are defined as follows. The total run-
time (rank0) is the time span between the sending of the first input
tuple and the reception of the result for the last input tuple — the
lower the total run-time measure, the higher the position in the
ranking. The latency (rank1) is measured as the average time span
between retrieving an input tuple and providing the corresponding
output tuple — the lower the latency, the higher the position in the
ranking.

Query 2. Evaluation of Query 2 addresses two aspects: (1) timeli-
ness of produced results (rank3) and (2) accuracy (rank4).

We define 𝑡out as the expected output tuple produced by a hy-
pothetical baseline system that is fed all input data in order upon
processing of an input tuple 𝑡in. Further, we define 𝑡 ′in as the latest
tuple retrieved by a participant’s system when the output tuple 𝑡 ′out
is produced. Now, 𝑡 ′in is possibly larger than 𝑡in, as the participants
solution may buffer events to cope with out-of-order situations.
The timeliness of each output tuple 𝑡 ′out is then computed as:

max(0.1 − (𝑡 ′in .𝑖−𝑡in .𝑖)
10.0 ).

The accuracy is computed for output tuples in which an event is
detected by the hypothetical baseline solution as:

max(0.1 − | (𝑡
′
out .event𝑠−𝑡out .event𝑠 )

10.0 |).

4 EVALUATION PLATFORM
As mentioned in the previous section, the task for this year’s DEBS
challenge is to detect when appliances contributing to an aggre-
gated stream of voltage and current readings from a smart meter
are switched on or off. Solutions can be implemented in any pro-
gramming language. The communication between the solution and
the evaluation platform is carried out through a simple REST-based
protocol. The solution, i.e., the contestant’s implementation code,
makes GET requests to receive data in batches of 1000 energy mea-
surements as a JSON object, it runs the detection and transmits the
answer using a POST request. In order to assess the performance
of the solutions, contestants are required to package their solu-
tions in Docker containers, which communicate with an evaluation
container via REST.

The docker-based setup allows running performance evalua-
tions in two ways: (i) locally, where the contestants use their in-
frastructure to test and evaluate their system’s performance, and
(ii) through the official evaluation platform. Both evaluation set-
tings utilize the same evaluation container that provides the data
and checks the provided answers. The official platform provides

184



The DEBS 2020 Grand Challenge DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

Evaluation
Container

Controller 
Container

(Front-end)

Manager
Container

Scheduler
Container

Solution 
Container

(Contestant Code)

Local Evaluation Platform

Contestant

Result 
Storage

Docker 
Registry

Figure 1: Architecture of the online evaluation platform.

additional functionality such as automatic re-evaluation, result per-
sistence, and a web-based leader-board ranking the submissions
of all contestants. To enable automatic re-evaluation when solu-
tions are updated, contestants make their submissions available at
a docker registry. The docker registry is periodically polled by the
platform, and a new run is triggered whenever an updated image
is identified. In the following, we briefly present the architecture of
the online evaluation platform.

Architecture
The overall architecture of the online evaluation platform [4] is
based on the principles of the HOBBIT’s platform1, extended and
slightly redesigned to support generic interfaces such as REST. This
new approach enables distributed but also local evaluation, allowing
contestants to assess their system performance using their own
infrastructure, without the need for modifications in their setup.
Local evaluation requires two containers: the solution container and
the evaluation container that checks the results of the solution. The
online evaluation platform uses the same evaluation and solution
containers, as well as some additional ones that provide services
that drive the experiments in a distributed and automated manner,
as depicted in Figure 1. The components are described below. They
run on a server equipped with Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz with 2 sockets, 8 cores per socket, and 2 threads per core
and 128GB of RAM. The evaluation platform is written in Python
and uses frameworks such as Flask and existing infrastructure
tooling such as Docker.

Controller. The controller can be envisioned as a mediator com-
ponent for all services. It provides a REST API for collecting and

1https://project-hobbit.eu/wp-content/uploads/2018/03/D2.2.2_Second_Version_of_
the_HOBBIT_Platform.pdf

presenting the evaluation results, and it also persists its state in a
separate database container. The controller runs a web-server for
displaying the results online as a ranked leader-board.

Manager. The manager component is responsible for triggering
the performance evaluation by automatically launching and tearing
down the solution and evaluation containers. It also collects the
results of each benchmark and sends them to the controller for
ranking and persistence.

Scheduler. The scheduler acts as a helper service. It queries the
remote docker registry and checks for updated solution containers.
In order to detect changes, the scheduler maintains the hashes of
the container images and requests a re-evaluation if they differ from
the latest ones in the registry. The re-evaluation is then performed
by the manager component.

Performance Optimizations. In order to provide batches of data
as quickly as possible to the solution code upon a GET request, the
data is pre-loaded asynchronously in a batching manner from the
files. The batches are then kept in memory until they are requested
by the client.

ACKNOWLEDGMENTS
This year’s Grand Challenge is co-organized by the Distributed
Computing and Systems (DCS) Group at Chalmers University (https:
//www.chalmers.se/en/) and the Middleware Systems Research
Group at Technical University of Munich (TUM), that made avail-
able the evaluation server for ranking the participants’ Grand Chal-
lenge solutions.

REFERENCES
[1] Karim Said Barsim and Bin Yang. 2016. Sequential clustering-based event de-

tection for non-intrusive load monitoring. Computer Science & Information
Technology 6 (2016), 77–85.

[2] Oleh Bodunov, Vincenzo Gulisano, Hannaneh Najdataei, Zbigniew Jerzak, André
Martin, Pavel Smirnov, Martin Strohbach, and Holger Ziekow. 2019. The DEBS
2019 grand challenge. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems. 205–208.

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD’96). AAAI Press, 226–231.

[4] GitHub. 2020. DEBS 2020 Grand Challenge Evaluation Platform. https://github.
com/dmpalyvos/debs-2020-challenge

[5] Vincenzo Gulisano, Zbigniew Jerzak, Roman Katerinenko, Martin Strohbach, and
Holger Ziekow. 2017. The DEBS 2017 Grand Challenge. In Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems (DEBS ’17).
ACM, New York, NY, USA, 271–273. https://doi.org/10.1145/3093742.3096342

[6] Vincenzo Gulisano, Zbigniew Jerzak, Pavel Smirnov, Martin Strohbach, Holger
Ziekow, and Dimitris Zissis. 2018. The DEBS 2018 Grand Challenge. In Proceedings
of the 12th ACM International Conference on Distributed and Event-based Systems,
DEBS 2018, Hamilton, New Zealand, June 25-29, 2018. 191–194. https://doi.org/10.
1145/3210284.3220510

[7] Vincenzo Gulisano, Zbigniew Jerzak, Spyros Voulgaris, and Holger Ziekow. 2016.
The DEBS 2016 Grand Challenge. In Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems (DEBS ’16). ACM, New York,
NY, USA, 289–292. https://doi.org/10.1145/2933267.2933519

[8] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung,
and Nenad Stojanovic. 2012. The DEBS 2012 grand challenge. In Proceedings
of the Sixth ACM International Conference on Distributed Event-Based Systems,
DEBS 2012, Berlin, Germany, July 16-20, 2012, François Bry, Adrian Paschke,
Patrick Th. Eugster, Christof Fetzer, and Andreas Behrend (Eds.). ACM, 393–398.
https://doi.org/10.1145/2335484.2335536

[9] Zbigniew Jerzak and Holger Ziekow. 2014. The DEBS 2014 grand challenge. In
The 8th ACM International Conference on Distributed Event-Based Systems, DEBS
’14, Mumbai, India, May 26-29, 2014, Umesh Bellur and Ravi Kothari (Eds.). ACM,
266–269. https://doi.org/10.1145/2611286.2611333

185

https://project-hobbit.eu/wp-content/uploads/2018/03/D2.2.2_Second_Version_of_the_HOBBIT_Platform.pdf
https://project-hobbit.eu/wp-content/uploads/2018/03/D2.2.2_Second_Version_of_the_HOBBIT_Platform.pdf
https://www.chalmers.se/en/
https://www.chalmers.se/en/
https://github.com/dmpalyvos/debs-2020-challenge
https://github.com/dmpalyvos/debs-2020-challenge
https://doi.org/10.1145/3093742.3096342
https://doi.org/10.1145/3210284.3220510
https://doi.org/10.1145/3210284.3220510
https://doi.org/10.1145/2933267.2933519
https://doi.org/10.1145/2335484.2335536
https://doi.org/10.1145/2611286.2611333


DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada V. Gulisano et al.

[10] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 Grand Challenge. In
Proceedings of the 9th ACM International Conference on Distributed Event-Based
Systems, DEBS ’15, Oslo, Norway, June 29 - July 3, 2015, Frank Eliassen and Roman
Vitenberg (Eds.). ACM, 266–268. https://doi.org/10.1145/2675743.2772598

[11] Thomas Kriechbaumer and Hans-Arno Jacobsen. 2018. BLOND, a building-level
office environment dataset of typical electrical appliances. Scientific data 5 (2018),

180048.
[12] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS

2013 grand challenge. In The 7th ACM International Conference on Distributed
Event-Based Systems, DEBS ’13, Arlington, TX, USA - June 29 - July 03, 2013, Sharma
Chakravarthy, Susan Darling Urban, Peter Pietzuch, and Elke A. Rundensteiner
(Eds.). ACM, 289–294. https://doi.org/10.1145/2488222.2488283

186

https://doi.org/10.1145/2675743.2772598
https://doi.org/10.1145/2488222.2488283

	Abstract
	1 Introduction
	2 Data
	3 The Grand Challenge Problem Definition
	3.1 Query 1
	3.2 Query 2
	3.3 Evaluation

	4 Evaluation Platform
	Acknowledgments
	References

